
Version 5.0.1, July 2002

COBOL Programmer’s Guide and Reference

Orbix, Orbix E2A, Orbix E2A Application Server Platform, Orbix E2A Application Server,
Orbix E2A XMLBus, Orbix E2A IMS Connector, Adaptive Runtime Technology, are trade-
marks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.
IONA, IONA Technologies, the IONA logo, End 2 Anywhere, End To Anywhere, IONA
e-Business Platform, and Total Business Integration are trademarks or registered trade-
marks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 1998, 2002 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

M 2 9 0 9

Contents

List of Figures ix

List of Tables xi

Preface xiii

Chapter 1 Introduction to Orbix E2A 1
Why CORBA? 2

CORBA Objects 3
Object Request Broker 5

CORBA Application Basics 6
Orbix Plug-In Design 7
Orbix Application Deployment 9

Location Domains 10
Configuration Domains 11

Chapter 2 Getting Started in Batch 13
Overview and Setup Requirements 14
Developing the Application Interfaces 19

Defining IDL Interfaces 20
Generating COBOL Source and Copybooks 21

Developing the Server 24
Writing the Server Implementation 25
Writing the Server Mainline 28
Building the Server 34

Developing the Client 35
Writing the Client 36
Building the Client 41

Running the Application 42
Starting the Orbix E2A Locator Daemon 43
Starting the Orbix E2A Node Daemon 44
Running the Server and Client 45
Application Output 46
iii

CONTENTS
Application Address Space Layout 47

Chapter 3 Getting Started in IMS 49
Overview and Setup Requirements 50
Developing the Application Interfaces 56

Defining IDL Interfaces 57
Generating COBOL Source and Copybooks 58

Developing the Server 62
Writing the Server Implementation 63
Writing the Server Mainline 67
Building the Server 72
Preparing the Server to Run in IMS 73

Developing and Running the Client 76
Writing the Client 77
Building and Running the Client 82

Chapter 4 Getting Started in CICS 83
Overview and Setup Requirements 84
Developing the Application Interfaces 89

Defining IDL Interfaces 90
Generating COBOL Source and Copybooks 91

Developing the Server 95
Writing the Server Implementation 96
Writing the Server Mainline 100
Building the Server 104
Preparing the Server to Run in CICS 105

Developing and Running the Client 109
Writing the Client 110
Building and Running the Client 115

Chapter 5 IDL Interfaces 117
IDL 118
Modules and Name Scoping 119
Interfaces 120

Interface Contents 122
Operations 123
Attributes 126
Exceptions 127
 iv

CONTENTS
Empty Interfaces 128
Inheritance of Interfaces 129
Multiple Inheritance 130
Inheritance of the Object Interface 132
Inheritance Redefinition 133
Forward Declaration of IDL Interfaces 134
Local Interfaces 135
Valuetypes 137
Abstract Interfaces 139

IDL Data Types 140
Built-in Data Types 141
Extended Built-in Data Types 143
Complex Data Types 146
Enum Data Type 147
Struct Data Type 148
Union Data Type 149
Arrays 151
Sequence 152
Pseudo Object Types 153

Defining Data Types 154
Constants 155
Constant Expressions 158

Chapter 6 IDL-to-COBOL Mapping 161
Mapping for Identifier Names 163
Mapping for Type Names 165
Mapping for Basic Types 166
Mapping for Boolean Type 171
Mapping for Enum Type 174
Mapping for Char Type 177
Mapping for Octet Type 179
Mapping for String Types 181
Mapping for Wide String Types 186
Mapping for Fixed Type 187
Mapping for Struct Type 191
Mapping for Union Type 193
Mapping for Sequence Types 198
Mapping for Array Type 203
Mapping for the Any Type 205
v

CONTENTS
Mapping for User Exception Type 207
Mapping for Typedefs 210
Mapping for the Object Type 213
Mapping for Constant Types 215
Mapping for Operations 218
Mapping for Attributes 223
Mapping for Operations with a Void Return Type and No Parameters 224
Mapping for Inherited Interfaces 226
Mapping for Multiple Interfaces 233

Chapter 7 Orbix E2A IDL Compiler 237
Running the Orbix E2A IDL Compiler 238
Generated COBOL Members 240
Orbix E2A IDL Compiler Arguments 242

Specifying the Compiler Arguments 243
-M Argument 244
-O Argument 250
-Q Argument 252
-S Argument 253
-T Argument 254
-Z Argument 256

Configuration Member Settings 257
COBOL Configuration Settings 258
Adapter Mapping Member Configuration Settings 261

Chapter 8 API Reference 263
API Reference Summary 264
API Reference Details 268

ANYFREE 270
ANYGET 272
ANYSET 274
COAERR 277
COAGET 281
COAPUT 286
COAREQ 292
COARUN 297
MEMALLOC 298
MEMFREE 300
 vi

CONTENTS
OBJDUP 301
OBJGETID 303
OBJNEW 305
OBJREL 308
OBJRIR 310
OBJTOSTR 312
ORBARGS 314
ORBEXEC 317
ORBHOST 323
ORBREG 325
ORBSRVR 328
ORBSTAT 329
ORBTIME 333
SEQALLOC 335
SEQDUP 339
SEQFREE 344
SEQGET 347
SEQSET 350
STRFREE 355
STRGET 357
STRLEN 360
STRSET 362
STRSETP 365
STRTOOBJ 367
TYPEGET 369
TYPESET 371
WSTRFREE 373
WSTRGET 374
WSTRLEN 375
WSTRSET 376
WSTRSETP 377
CHECK-STATUS 378

Deprecated APIs 381
vii

CONTENTS
Chapter 9 Memory Handling 383
Operation Parameters 384

Unbounded Sequences and Memory Management 385
Unbounded Strings and Memory Management 389
Object References and Memory Management 393
The any Type and Memory Management 397
User Exceptions and Memory Management 402

Memory Management Routines 404

Chapter 10 POA Policies 407

Chapter 11 System Exceptions 411

Index 415
 viii

List of Figures

Figure 1: The Nature of Abstract CORBA Objects 3

Figure 2: The Object Request Broker 5

Figure 3: Address Space Layout for an Orbix E2A COBOL Application 47

Figure 4: Inheritance Hierarchy for PremiumAccount Interface 131
ix

LIST OF FIGURES
 x

List of Tables

Table 1: Supplied Code and JCL 15

Table 2: Supplied Copybooks 16

Table 3: Generated Server Source Code Members 21

Table 4: Generated COBOL Copybooks 22

Table 5: Supplied Code and JCL 51

Table 6: Supplied Copybooks 53

Table 7: Generated Server Source Code Members 59

Table 8: Generated COBOL Copybooks 60

Table 9: Generated IMS Adapter Mapping Member 61

Table 10: Supplied Code and JCL 85

Table 11: Supplied Copybooks 87

Table 12: Generated Server Source Code Members 92

Table 13: Generated COBOL Copybooks 93

Table 14: Generated CICS Adapter Mapping Member 94

Table 15: CORBA::LocalObject Pseudo-Operations and Return Values 136

Table 16: Built-in IDL Data Types, Sizes, and Values 141

Table 17: Extended built-in IDL Data Types, Sizes, and Values 143

Table 18: Mapping for Basic IDL Types 166

Table 19: COBOL Members Generated by the Orbix E2A IDL Compiler 240

Table 20: Example of Default Generated Data Names 245

Table 21: Example of Level-0-Scoped Generated Data Names 247

Table 22: Example of Level-1-Scoped Generated Data Names 247

Table 23: Example of Level-2-Scoped Generated Data Names 248

Table 24: COBOL Configuration Settings 259

Table 25: Adapter Mapping Member Configuration Settings 262

Table 26: Summary of Common Services and Their COBOL Identifiers 310
xi

LIST OF TABLES
Table 27: Memory Handling for IN Unbounded Sequences 385

Table 28: Memory Handling for INOUT Unbounded Sequences 386

Table 29: Memory Handling for OUT and Return Unbounded Sequences 387

Table 30: Memory Handling for IN Unbounded Strings 389

Table 31: Memory Handling for INOUT Unbounded Strings 390

Table 32: Memory Handling for OUT and Return Unbounded Strings 391

Table 33: Memory Handling for IN Object References 393

Table 34: Memory Handling for INOUT Object References 394

Table 35: Memory Handling for OUT and Return Object References 395

Table 36: Memory Handling for IN Any Types 397

Table 37: Memory Handling for INOUT Any Types 398

Table 38: Memory Handling for OUT and Return Any Types 400

Table 39: Memory Handling for User Exceptions 402

Table 40: POA Policies Supported by the Orbix E2A COBOL Runtime 408
 xii

Preface
Orbix E2A is a full implementation from IONA Technologies of the Common
Object Request Broker Architecture (CORBA), as specified by the Object
Management Group (OMG). Orbix E2A complies with the following
specifications:

ï CORBA 2.3

ï GIOP 1.2 (default), 1.1, and 1.0

The Orbix E2A Application Server Platform Mainframe Edition is IONA�s
implementation of the CORBA standard for the OS/390 platform. Orbix E2A
Application Server Platform Mainframe Edition documentation is periodically
updated. New versions between release are available at http://
www.iona.com/docs.

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
doc-feedback@iona.com.

Audience This guide is intended for COBOL application programmers who want to
develop Orbix E2A applications in a native OS/390 environment.

Supported Compilers The supported compilers are:

ï IBM COBOL for OS/390 & VM version 2.1.1.

ï IBM COBOL for OS/390 & VM version 2.1.2.

ï IBM COBOL for OS/390 & VM version 2.2.1.
xiii

PREFACE
Related Documentation The related documentation provided includes:

ï The PL/I Programmerís Guide and Reference, which provides details
about developing, in a native OS/390 environment, Orbix E2A PL/I
applications that can run in batch, CICS, or IMS.

ï The CORBA Programmerís Guide, C++ and the CORBA Programmerís
Reference, C++, which provide details about developing Orbix E2A
applications in C++ in various environments, including OS/390.

ï The Mainframe Migration Guide, which provides details of migration
issues for users who have migrated from IONA�s Orbix 2.3-based
solution for OS/390 to Orbix E2A Application Server Platform
Mainframe Edition.

Organization of this Guide This guide is divided as follows:

Chapter 1, ìIntroduction to Orbix E2Aî

This chapter provides an introductory overview of CORBA and Orbix E2A.

Chapter 2, ìGetting Started in Batchî

This chapter introduces batch application programming with Orbix E2A, by
showing how to use Orbix E2A to develop a simple distributed application
that features a COBOL client and server, each running in batch in its own
region.

Chapter 3, ìGetting Started in IMSî

This chapter introduces IMS application programming with Orbix E2A, by
showing how to use Orbix E2A to develop a simple distributed application
that features a COBOL client running in batch and a COBOL server running
in IMS.

Chapter 4, ìGetting Started in CICSî

This chapter introduces CICS application programming with Orbix E2A, by
showing how to use Orbix E2A to develop a simple distributed application
that features a COBOL client running in batch and a COBOL server running
in CICS.
 xiv

PREFACE
Chapter 5, ìIDL Interfacesî

The CORBA Interface Definition Language (IDL) is used to describe the
interfaces of objects in an enterprise application. An object�s interface
describes that object to potential clients through its attributes and
operations, and their signatures. This chapter describes IDL semantics and
uses.

Chapter 6, ìIDL-to-COBOL Mappingî

The CORBA Interface Definition Language (IDL) is used to define interfaces
that are exposed by servers in your network. This chapter describes the
standard IDL-to-COBOL mapping rules and shows, by example, how each
IDL type is represented in COBOL.

Chapter 7, ìOrbix E2A IDL Compilerî

This chapter describes the Orbix E2A IDL compiler in terms of the JCL used
to run it, the COBOL members that it creates, the arguments that you can
use with it, and the configuration settings that it uses.

Chapter 8, ìAPI Referenceî

This chapter summarizes the API functions that are defined for the Orbix
E2A COBOL runtime, in pseudo-code. It explains how to use each function,
with an example of how to call it from COBOL.

Chapter 9, ìMemory Handlingî

Memory handling must be performed when using dynamic structures such
as unbounded strings, unbounded sequences, and anys. This chapter
provides details of responsibility for the allocation and subsequent release of
dynamic memory for these complex types at the various stages of an Orbix
E2A COBOL application. It first describes in detail the memory handling
rules adopted by the COBOL runtime for operation parameters relating to
different dynamic structures. It then provides a type-specific breakdown of
the APIs that are used to allocate and release memory for these dynamic
structures.

Chapter 10, ìPOA Policiesî

This chapter summarizes the POA policies that are supported by the Orbix
E2A COBOL runtime, and the argument used with each policy.

Chapter 11, ìSystem Exceptionsî

This chapter summarizes the Orbix E2A system exceptions that are specific
to the Orbix E2A COBOL runtime
xv

PREFACE
Additional Related Resources The IONA knowledge base contains helpful articles, written by IONA
experts, about the Orbix and other products. You can access the knowledge
base at the following location:

http://www.iona.com/support/kb/

The IONA update center contains the latest releases and patches for IONA
products:

http://www.iona.com/support/update/

Typographical Conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.
 xvi

PREFACE
Keying Conventions This guide may use the following keying conventions:

No prompt When a command�s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
xvii

PREFACE
 xviii

CHAPTER 1

Introduction to
Orbix E2A
With Orbix E2A, you can develop and deploy large-scale
enterprise-wide CORBA systems in languages such as COBOL,
PL/I, C++, and Java. Orbix E2A has an advanced modular
architecture that lets you configure and change functionality
without modifying your application code, and a rich
deployment architecture that lets you configure and manage
a complex distributed system. Orbix E2A Application Server
Platform Mainframe Edition is IONAís CORBA solution for the
OS/390 environment.

In this chapter This chapter discusses the following topics:

Why CORBA? page 2

CORBA Application Basics page 6

Orbix Plug-In Design page 7

Orbix Application Deployment page 9
1

CHAPTER 1 |
Why CORBA?

Need for open systems Today�s enterprises need flexible, open information systems. Most
enterprises must cope with a wide range of technologies, operating systems,
hardware platforms, and programming languages. Each of these is good at
some important business task; all of them must work together for the
business to function.

The common object request broker architecture�CORBA�provides the
foundation for flexible and open systems. It underlies some of the Internet�s
most successful e-business sites, and some of the world�s most complex and
demanding enterprise information systems.

Need for high-performance
systems

Orbix is a CORBA development platform for building high-performance
systems. Its modular architecture supports the most demanding needs for
scalability, performance, and deployment flexibility. The Orbix architecture
is also language-independent, so you can implement Orbix applications in
COBOL, PL/I, C++, or Java that interoperate via the standard IIOP protocol
with applications built on any CORBA-compliant technology.

Open standard solution CORBA is an open, standard solution for distributed object systems. You can
use CORBA to describe your enterprise system in object-oriented terms,
regardless of the platforms and technologies used to implement its different
parts. CORBA objects communicate directly across a network using
standard protocols, regardless of the programming languages used to create
objects or the operating systems and platforms on which the objects run.

Widely available solution CORBA solutions are available for every common environment and are used
to integrate applications written in C, C++, Java, Ada, Smalltalk, COBOL,
and PL/I running on embedded systems, PCs, UNIX hosts, and mainframes.
CORBA objects running in these environments can cooperate seamlessly.
Through COMet, IONA�s dynamic bridge between CORBA and COM, they
can also interoperate with COM objects. CORBA offers an extensive
infrastructure that supports all the features required by distributed business
objects. This infrastructure includes important distributed services, such as
transactions, messaging, and security.
 2

CORBA Objects

Nature of abstract CORBA objects CORBA objects are abstract objects in a CORBA system that provide
distributed object capability between applications in a network. Figure 1
shows that any part of a CORBA system can refer to the abstract CORBA
object, but the object is only implemented in one place and time on some
server of the system.

Object references An object reference is used to identify, locate, and address a CORBA object.
Clients use an object reference to invoke requests on a CORBA object.
CORBA objects can be implemented by servers in any supported
programming language, such as COBOL, PL/I, C++, or Java.

IDL interfaces Although CORBA objects are implemented using standard programming
languages, each CORBA object has a clearly-defined interface, specified in
the CORBA Interface Definition Language (IDL). The interface definition
specifies which member functions, data types, attributes, and exceptions
are available to a client, without making any assumptions about an object�s
implementation.

Figure 1: The Nature of Abstract CORBA Objects

A server
implements a
CORBA object

IDL interface definitions
specify CORBA objects

Clients access
CORBA
objects via
object
references
3

CHAPTER 1 |
Advantages of IDL To call member functions on a CORBA object, a client programmer needs
only to refer to the object�s interface definition. Clients use their normal
programming language syntax to call the member functions of a CORBA
object. A client does not need to know which programming language
implements the object, the object�s location on the network, or the operating
system in which the object exists.

Using an IDL interface to separate an object�s use from its implementation
has several advantages. For example, it means that you can change the
programming language in which an object is implemented without affecting
the clients that access the object. It also means that you can make existing
objects available across a distributed network.
 4

Object Request Broker

Overview CORBA defines a standard hitecture for object request brokers (ORB). An
ORB is a software component that mediates the transfer of messages from a
program to an object located on a remote network host. The ORB hides the
underlying complexity of network communications from the programmer.
With a few calls to an ORB�s application programming interface (API),
servers can make CORBA objects available to client programs in your
network.

Role of an ORB An ORB lets you create standard software objects whose member functions
can be invoked by client programs located anywhere in your network. A
program that contains instances of CORBA objects is often known as a
server. However, the same program can serve at different times as a client
and a server. For example, a server program might itself invoke calls on
other server programs, and so relate to them as a client.

When a client invokes a member function on a CORBA object, the ORB
intercepts the function call. As shown in Figure 2 on page 6, the ORB
redirects the function call across the network to the target object. The ORB
then collects results from the function call and returns these to the client.
5

CHAPTER 1 |

OC l i
Graphical overview of ORB role Figure 2 provides a graphical overview of the role of the ORB in distributed
network communications.

Figure 2: The Object Request Broker

Object
 6

b j e c t R e q u e s t B r o k e re n t C l i e n t H o s t

CORBA Application Basics

Developing application interfaces You start developing a CORBA application by defining interfaces to objects
in your system in CORBA IDL. You compile these interfaces with an IDL
compiler. An IDL compiler can generate COBOL, PL/I, C++, or Java from
IDL definitions. Generated COBOL and PL/I consists of server skeleton code,
which you use to implement CORBA objects.

Client invocations on CORBA
objects

When an Orbix E2A COBOL client on OS/390 calls a member function on a
CORBA object on another platform, the call is transferred through the
COBOL runtime to the ORB. (The client invokes on object references that it
obtains from the server process.) The ORB then passes the function call to
the server.

When a CORBA client on another platform calls a member function on an
Orbix E2A COBOL server object on OS390, the ORB passes the function call
through the COBOL runtime and then through the server skeleton code to
the target object.
7

CHAPTER 1 |
Orbix Plug-In Design

Overview Orbix has a modular plug-in architecture. The ORB core supports abstract
CORBA types and provides a plug-in framework. Support for concrete
features like specific network protocols, encryption mechanisms, and
database storage is packaged into plug-ins that can be loaded into the ORB,
based on runtime configuration settings.

Plug-ins A plug-in is a code library that can be loaded into an Orbix application at
runtime. A plug-in can contain any type of code; typically, it contains
objects that register themselves with the ORB runtimes to add functionality.

Plug-ins can be linked directly with an application, loaded when an
application starts up, or loaded on-demand while the application is running.
This gives you the flexibility to choose precisely those ORB features that you
actually need. Moreover, you can develop new features such as protocol
support for direct ATM or HTTPNG. Because ORB features are configured
into the application rather than compiled in, you can change your choices
as your needs change without rewriting or recompiling applications.

For example, an application that uses the standard IIOP protocol can be
reconfigured to use the secure SSL protocol simply by configuring a different
transport plug-in. There is no particular transport inherent to the ORB core;
you simply load the transport set that suits your application best. This
architecture makes it easy for IONA to support additional transports in the
future such as multicast or special purpose network protocols.

ORB core The ORB core presents a uniform programming interface to the developer:
everything is a CORBA object. This means that everything appears to be a
local COBOL, PL/I, C++, or Java object within the process, depending on
which language you are using. In fact it might be a local object, or a remote
object reached by some network protocol. It is the ORB�s job to get
application requests to the right objects no matter where they are located.
 8

To do its job, the ORB loads a collection of plug-ins as specified by ORB
configuration settings�either on startup or on demand�as they are needed
by the application. For remote objects, the ORB intercepts local function
calls and turns them into CORBA requests that can be dispatched to a
remote object across the network via the standard IIOP protocol.
9

CHAPTER 1 |
Orbix Application Deployment

Overview Orbix provides a rich deployment environment designed for high scalability.
You can create a location domain that spans any number of hosts across a
network, and can be dynamically extended with new hosts. Centralized
domain management allows servers and their objects to move among hosts
within the domain without disturbing clients that use those objects. Orbix
supports load balancing across object groups. A configuration domain
provides the central control of configuration for an entire distributed
application.

Orbix offers a rich deployment environment that lets you structure and
control enterprise-wide distributed applications. Orbix provides central
control of all applications within a common domain.

In this section This section discusses the following topics:

Location Domains page 10

Configuration Domains page 11
 10

Location Domains

Overview A location domain is a collection of servers under the control of a single
locator daemon. An Orbix location domain consists of two components: a
locator daemon and a node daemon.

Locator daemon The locator daemon can manage servers on any number of hosts across a
network. The locator daemon automatically activates remote servers through
a stateless activator daemon that runs on the remote host.

The locator daemon also maintains the implementation repository, which is
a database of available servers. The implementation repository keeps track
of the servers available in a system and the hosts they run on. It also
provides a central forwarding point for client requests. By combining these
two functions, the locator lets you relocate servers from one host to another
without disrupting client request processing. The locator redirects requests
to the new location and transparently reconnects clients to the new server
instance. Moving a server does not require updates to the naming service,
trading service, or any other repository of object references.

The locator can monitor the state of health of servers and redirect clients in
the event of a failure, or spread client load by redirecting clients to one of a
group of servers.

Node daemon The node daemon acts as the control point for a single machine in the
system. Every machine that will run an application server must be running a
node daemon. The node daemon starts, monitors, and manages the
application servers running on that machine. The locator daemon relies on
the node daemons to start processes and inform it when new processes
have become available.

Note: See the CORBA Administratorís Guide for more details about
these.
11

CHAPTER 1 |
Configuration Domains

Overview A configuration domain is a collection of applications under common
administrative control. A configuration domain can contain multiple location
domains. During development, or for small-scale deployment, configuration
can be stored in an ASCII text file, which is edited directly.

Plug-in design The configuration mechanism is loaded as a plug-in, so future configuration
systems can be extended to load configuration from any source such as
example HTTP or third-party configuration systems.
 12

CHAPTER 2

Getting Started in
Batch
This chapter introduces batch application programming with
Orbix E2A, by showing how to use Orbix E2A to develop a
simple distributed application that features a COBOL client
and server, each running in its own region.

In this chapter This chapter discusses the following topics:

Overview and Setup Requirements page 14

Developing the Application Interfaces page 19

Developing the Server page 24

Developing the Client page 35

Running the Application page 42

Application Address Space Layout page 47

Note: The example provided in this chapter does not reflect a real-world
scenario that requires the Orbix E2A Application Server Platform
Mainframe Edition, because the supplied client and server are written in
COBOL and running on OS/390. The example is supplied to help you
quickly familiarize with the concepts of developing a batch COBOL
application with Orbix E2A.
13

CHAPTER 2 |
Overview and Setup Requirements

Introduction This section provides an overview of the main steps involved in creating an
Orbix E2A COBOL application. It describes important steps that you must
perform before you begin. It also introduces the supplied SIMPLE
demonstration, and outlines where you can find the various source code and
JCL elements for it.

Steps to create an application The main steps to create an Orbix E2A COBOL application are:

This chapter describes in detail how to perform each of these steps.

The Simple demonstration This chapter describes how to develop a simple client-server application
that consists of:

ï An Orbix E2A COBOL server that implements a simple persistent
POA-based server.

ï An Orbix E2A COBOL client that uses the clearly defined object
interface, SimpleObject, to communicate with the server.

The client and server use the Internet Inter-ORB Protocol (IIOP), which runs
over TCP/IP, to communicate. As already stated, the SIMPLE demonstration
is not meant to reflect a real-world scenario requiring the Orbix E2A
Application Server Platform Mainframe Edition, because the client and
server are written in the same language and running on the same platform.

Step Action

1 �Developing the Application Interfaces� on page 19.

2 �Developing the Server� on page 24.

3 �Developing the Client� on page 35.
 14

The demonstration server The server accepts and processes requests from the client across the
network. It is a batch server that runs in its own region.

See �Location of supplied code and JCL� on page 15 for details of where
you can find an example of the supplied server. See �Developing the Server�
on page 24 for more details of how to develop the server.

The demonstration client The client runs in its own region and accesses and requests data from the
server. When the client invokes a remote operation, a request message is
sent from the client to the server. When the operation has completed, a
reply message is sent back to the client. This completes a single remote
CORBA invocation.

See �Location of supplied code and JCL� on page 15 for details of where
you can find an example of the supplied client. See �Developing the Client�
on page 35 for more details of how to develop the client.

Location of supplied code and JCL All the source code and JCL components needed to create and run the batch
SIMPLE demonstration have been provided with your installation. Apart from
site-specific changes to some JCL, these do not require editing.

Table 1 provides a summary of the supplied code elements and JCL
components that are relevant to the batch SIMPLE demonstration (where
orbixhlq represents your installation�s high-level qualifier).

Table 1: Supplied Code and JCL (Sheet 1 of 2)

Location Description

orbixhlq.DEMOS.IDL(SIMPLE) This is the supplied IDL.

orbixhlq.DEMOS.COBOL.SRC(SIMPLESV) This is the source code for the batch server mainline
program.

orbixhlq.DEMOS.COBOL.SRC(SIMPLES) This is the source code for the batch server
implementation program.

orbixhlq.DEMOS.COBOL.SRC(SIMPLECL) This is the source code for the client program.

orbixhlq.JCL(LOCATOR) This JCL runs the Orbix E2A locator daemon.

orbixhlq.JCL(NODEDAEM) This JCL runs the Orbix E2A node daemon.
15

CHAPTER 2 |
Supplied copybooks Table 2 provides a summary of the various copybooks supplied with your
product installation that are relevant to batch. In Table 2, servers means
batch servers, and clients means batch clients. Again, orbixhlq represents
your installation�s high-level qualifier.

orbixhlq.DEMOS.COBOL.BUILD.JCL(SIMPLIDL) This JCL runs the Orbix E2A IDL compiler, to
generate COBOL source and copybooks for the batch
server. The -S and -Z compiler arguments, which
generate server mainline and server implementation
code respectively, are disabled by default in this JCL.

orbixhlq.DEMOS.COBOL.BUILD.JCL(SIMPLECB) This JCL compiles the client program.

orbixhlq.DEMOS.COBOL.BUILD.JCL(SIMPLESB) This JCL compiles and links the batch server
mainline and batch server implementation programs.

orbixhlq.DEMOS.COBOL.RUN.JCL(SIMPLESV) This JCL runs the server.

orbixhlq.DEMOS.COBOL.BUILD.JCL(SIMPLECL) This JCL runs the client.

Note: Other code elements and JCL components are provided for the IMS
and CICS versions of the SIMPLE demonstration. See �Getting Started in
IMS� on page 49 and �Getting Started in CICS� on page 83 for more
details of these.

Table 1: Supplied Code and JCL (Sheet 2 of 2)

Location Description

Table 2: Supplied Copybooks (Sheet 1 of 2)

Location Description

orbixhlq.INCLUDE.COPYLIB(CHKERRS) This contains a COBOL function that can be called
both by clients and servers to check if an exception
has occurred, and to report that exception.

orbixhlq.INCLUDE.COPYLIB(CORBA) This is used both by clients and servers. It contains
various Orbix E2A COBOL definitions, such as
REQUEST-INFO used by the COAREQ function, and
ORBIX-STATUS-INFORMATION which is used to register
and report exceptions raised by the COBOL runtime.
 16

orbixhlq.INCLUDE.COPYLIB(CORBATYP) This is used both by clients and servers. It contains
the COBOL typecode representation for IDL basic
types.

orbixhlq.INCLUDE.COPYLIB(IORSLCT) This is used both by clients and servers. It contains
the COBOL SELECT statement entry for file
processing, for use with the COPY…REPLACING
statement.

orbixhlq.INCLUDE.COPYLIB(IORFD) This is used both by clients and servers. It contains
the COBOL FD statement entry for file processing, for
use with the COPY…REPLACING statement.

orbixhlq.INCLUDE.COPYLIB(CHKFILE) This is used both by clients and servers. It is used for
file handling error checking.

orbixhlq.INCLUDE.COPYLIB(PROCPARM) This is used both by clients and servers. It contains
the appropriate definitions for a COBOL program to
accept parameters from the JCL for use with the
ORBARGS API (that is, the argument-string
parameter).

orbixhlq.DEMOS.COBOL.COPYLIB This PDS is used to store all batch copybooks
generated by the Orbix E2A IDL compiler when you
run the supplied SIMPLIDL JCL for the batch
demonstration. It also contains copybooks with
Working Storage data definitions and Procedure
Division paragraphs for use with the bank, naming,
and nested sequences demonstrations.

Note: Some other copybooks are provided specifically for use with IMS.
See �Getting Started in IMS� on page 49 for more details of these.

Table 2: Supplied Copybooks (Sheet 2 of 2)

Location Description
17

CHAPTER 2 |
Checking JCL components When creating the SIMPLE application, check that each step involved within
the separate JCL components completes with a condition code of zero. If the
condition codes are not zero, establish the point and cause of failure. The
most likely cause is the site-specific JCL changes required for the compilers.
Ensure that each high-level qualifier throughout the JCL reflects your
installation.
 18

Developing the Application Interfaces

Overview This section describes the steps you must follow to develop the IDL
interfaces for your application. It first describes how to define the IDL
interfaces for the objects in your system. It then describes how to generate
COBOL source and copybooks from IDL interfaces, and provides a
description of the members generated from the supplied SimpleObject
interface.

Steps to develop application
interfaces

The steps to develop the interfaces to your application are:

Step Action

1 Define public IDL interfaces to the objects required in your
system.

See �Defining IDL Interfaces� on page 20.

2 Use the Orbix E2A IDL compiler to generate COBOL source
code and copybooks from the defined IDL.

See �Generating COBOL Source and Copybooks� on page 21.
19

CHAPTER 2 |
Defining IDL Interfaces

Defining the IDL The first step in writing an Orbix E2A program is to define the IDL interfaces
for the objects required in your system. The following is an example of the
IDL for the SimpleObject interface that is supplied in
orbixhlq.DEMOS.IDL(SIMPLE):

Explanation of the IDL The preceding IDL declares a SimpleObject interface that is scoped (that is,
contained) within the Simple module. This interface exposes a single
call_me() operation. This IDL definition provides a language-neutral
interface to the CORBA Simple::SimpleObject type.

How the demonstration uses
this IDL

For the purposes of this example, the SimpleObject CORBA object is
implemented in COBOL in the supplied SIMPLES server application. The
server application creates a persistent server object of the SimpleObject
type, and publishes its object reference to a PDS member. The client
application must then locate the SimpleObject object by reading the
interoperable object reference (IOR) from the relevant PDS member. The
client invokes the call_me() operation on the SimpleObject object, and
then exits.

// IDL
module Simple
{

interface SimpleObject
{

void
call_me();

};
};
 20

Generating COBOL Source and Copybooks

The Orbix E2A IDL compiler You can use the Orbix E2A IDL compiler to generate COBOL source and
copybooks from IDL definitions.

Orbix E2A IDL compiler
configuration

The Orbix E2A IDL compiler uses the Orbix E2A configuration member for
its settings. The SIMPLIDL JCL that runs the compiler uses a configuration
member provided in orbixhlq.CONFIG(IDL). See �Orbix E2A IDL Compiler�
on page 237 for more details.

Running the Orbix E2A IDL
compiler

The COBOL source for the batch server demonstration described in this
chapter is generated in the first step of the following job:

Generated source code members Table 3 shows the server source code members that the Orbix E2A IDL
compiler generates, based on the defined IDL.

orbixhlq.DEMOS.COBOL.BUILD.JCL(SIMPLIDL)

Table 3: Generated Server Source Code Members

Member JCL Keyword
Parameter

Description

idlmembernameS IMPL This is the server implementation
source code member. It contains
stub paragraphs for all the
callable operations.

The is only generated if you
specify the -Z argument with the
IDL compiler.

idlmembernameSV IMPL This is server mainline source
code member.

This is only generated if you
specify the -S argument with the
IDL compiler.
21

CHAPTER 2 |
Generated COBOL copybooks Table 4 shows the COBOL copybooks that the Orbix E2A IDL compiler
generates, based on the defined IDL.

Note: For the purposes of this example, the SIMPLES server
implementation and SIMPLESV server mainline are already provided in your
product installation. Therefore, the IDL compiler arguments that are used
to generate them are not specified in the supplied SIMPLIDL JCL. See
�Orbix E2A IDL Compiler� on page 237 for more details of the IDL
compiler arguments used to generate server source code.

Table 4: Generated COBOL Copybooks

Copybook JCL Keyword
Parameter

Description

idlmembername COPYLIB This copybook contains data
definitions that are used for
working with operation
parameters and return values for
each interface defined in the IDL
member.

The name for this copybook does
not take a suffix.

idlmembernameX COPYLIB This copybook contains data
definitions that are used by the
COBOL runtime to support the
interfaces defined in the IDL
member.

This copybook is automatically
included in the idlmembername
copybook.

idlmembernameD COPYLIB This copybook contains
procedural code for performing
the correct paragraph for the
requested operation.

This copybook is automatically
included in the idlmembernameS
source code member.
 22

How IDL maps to COBOL
copybooks

Each IDL interface maps to a group of COBOL data definitions. There is one
definition for each IDL operation. A definition contains each of the
parameters for the relevant IDL operation in their corresponding COBOL
representation. See �IDL-to-COBOL Mapping� on page 161 for details of
how IDL types map to COBOL.

Attributes map to two operations (get and set), and readonly attributes map
to a single get operation.

Member name restrictions Generated source code member and copybook names are based on the IDL
member name. If the IDL member name exceeds six characters, the Orbix
E2A IDL compiler uses only the first six characters of the IDL member name
when generating the other member names. This allows space for appending
the two-character SV suffix to the name for the server mainline member,
while allowing it to adhere to the eight-character maximum size limit for
OS/390 member names. Consequently, all other member names also use
only the first six characters of the IDL member name, followed by their
individual suffixes, as appropriate.

Location of demonstration
copybooks

You can find examples of the copybooks generated for the SIMPLE
demonstration in the following locations:

ï orbixhlq.DEMOS.COBOL.COPYLIB(SIMPLE)

ï orbixhlq.DEMOS.COBOL.COPYLIB(SIMPLEX)

ï orbixhlq.DEMOS.COBOL.COPYLIB(SIMPLED)

Note: These copybooks are not shipped with your product installation.
They are generated when you run the supplied SIMPLIDL JCL, to run the
Orbix E2A IDL compiler.
23

CHAPTER 2 |
Developing the Server

Overview This section describes the steps you must follow to develop the batch server
executable for your application.

Steps to develop the server The steps to develop the server application are:

Step Action

1 �Writing the Server Implementation� on page 25

2 �Writing the Server Mainline� on page 28

3 �Building the Server� on page 34.
 24

Writing the Server Implementation

The server implementation
program

You must implement the server interface by writing a COBOL program that
implements each operation in the idlmembername copybook. For the
purposes of this example, you must write a COBOL program that
implements each operation in the SIMPLE copybook. When you specify the
-Z argument with the Orbix E2A IDL compiler in this case, it generates a
skeleton program called SIMPLES, which is a useful starting point.

Example of the SIMPLES program The following is an example of the batch SIMPLES program:

Example 1: The Batch SIMPLES Demonstration (Sheet 1 of 2)

**
* Identification Division
**
IDENTIFICATION DIVISION.
PROGRAM-ID. SIMPLES.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
COPY SIMPLE.
COPY CORBA.

01 WS-INTERFACE-NAME PICTURE X(30).
01 WS-INTERFACE-NAME-LENGTH PICTURE 9(09) BINARY

VALUE 30.

**
* Procedure Division
**
PROCEDURE DIVISION.

1 ENTRY "DISPATCH".

2 CALL "COAREQ" USING REQUEST-INFO.
SET WS-COAREQ TO TRUE.
PERFORM CHECK-STATUS.
25

CHAPTER 2 |
3 * Resolve the pointer reference to the interface name which is
* the fully scoped interface name
* Note make sure it can handle the max interface name length

CALL "STRGET" USING INTERFACE-NAME
WS-INTERFACE-NAME-LENGTH
WS-INTERFACE-NAME.

SET WS-STRGET TO TRUE.
PERFORM CHECK-STATUS.

**
* Interface(s) evaluation:
**

MOVE SPACES TO SIMPLE-SIMPLEOBJECT-OPERATION.

EVALUATE WS-INTERFACE-NAME
WHEN 'IDL:Simple/SimpleObject:1.0'

4 * Resolve the pointer reference to the operation information
CALL "STRGET" USING OPERATION-NAME

SIMPLE-S-3497-OPERATION-LENGTH
SIMPLE-SIMPLEOBJECT-OPERATION

SET WS-STRGET TO TRUE
PERFORM CHECK-STATUS
DISPLAY "Simple::" SIMPLE-SIMPLEOBJECT-OPERATION

"invoked"
END-EVALUATE.

5 COPY SIMPLED.

GOBACK.

6 DO-SIMPLE-SIMPLEOBJECT-CALL-ME.
CALL "COAGET" USING SIMPLE-SIMPLEOBJECT-70FE-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

CALL "COAPUT" USING SIMPLE-SIMPLEOBJECT-70FE-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

**
* Check Errors Copybook
**
COPY CHKERRS.

Example 1: The Batch SIMPLES Demonstration (Sheet 2 of 2)
 26

Explanation of the batch
SIMPLES program

The SIMPLES program can be explained as follows:

1. The DISPATCH logic is automatically coded for you, and the bulk of the
code is contained in the SIMPLED copybook. When an incoming request
arrives from the network, it is processed by the ORB and a call is made
to the DISPATCH entry point.

2. COAREQ is called to provide information about the current invocation
request, which is held in the REQUEST-INFO block that is contained in
the CORBA copybook.

COAREQ is called once for each operation invocation�after a request
has been dispatched to the server, but before any calls are made to
access the parameter values.

3. STRGET is called to copy the characters in the unbounded string pointer
for the interface name to the string item representing the fully scoped
interface name.

4. STRGET is called again to copy the characters in the unbounded string
pointer for the operation name to the string item representing the
operation name.

5. The procedural code used to perform the correct paragraph for the
requested operation is copied into the program from the SIMPLED
copybook.

6. Each operation has skeleton code, with appropriate calls to COAPUT and
COAGET to copy values to and from the COBOL structures for that
operation�s argument list. You must provide a correct implementation
for each operation. You must call COAGET and COAPUT, even if your
operation takes no parameters and returns no data. You can simply
pass in a dummy area as the parameter list.

Location of the batch SIMPLES
program

You can find a complete version of the batch SIMPLES server implementation
program in orbixhlq.DEMOS.COBOL.SRC(SIMPLES).

Note: The supplied SIMPLES program is only a suggested way of
implementing an interface. It is not necessary to have all operations
implemented in the same COBOL program.
27

CHAPTER 2 |
Writing the Server Mainline

The server mainline program The next step is to write the server mainline program in which to run the
server implementation. For the purposes of this example, when you specify
the -S argument with the Orbix E2A IDL compiler, it generates a program
called SIMPLESV, which contains the server mainline code.

Example of the batch SIMPLESV
program

The following is an example of the batch SIMPLESV program:

Example 2: The Batch SIMPLESV Demonstration (Sheet 1 of 4)

IDENTIFICATION DIVISION.
PROGRAM-ID. SIMPLESV.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

COPY IORSLCT REPLACING
"X-IOR" BY SIMPLE-SIMPLEOBJECT-IOR
"X-IORFILE" BY "IORFILE"
"X-IOR-STAT" BY SIMPLE-SIMPLEOBJECT-IOR-STAT.

DATA DIVISION.
FILE SECTION.

COPY IORFD REPLACING
"X-IOR" BY SIMPLE-SIMPLEOBJECT-IOR
"X-REC" BY SIMPLE-SIMPLEOBJECT-REC.

WORKING-STORAGE SECTION.

COPY SIMPLE.
COPY CORBA.

01 ARG-LIST PICTURE X(01)
VALUE SPACES.

01 ARG-LIST-LEN PICTURE 9(09) BINARY
VALUE 0.

01 ORB-NAME PICTURE X(10)
VALUE "simple_orb".

01 ORB-NAME-LEN PICTURE 9(09) BINARY
VALUE 10.

01 SERVER-NAME PICTURE X(18)
VALUE "simple_persistent ".
 28

01 SERVER-NAME-LEN PICTURE 9(09) BINARY
VALUE 17.

01 INTERFACE-LIST.
03 FILLER PICTURE X(28)

VALUE "IDL:Simple/SimpleObject:1.0 ".
01 INTERFACE-NAMES-ARRAY REDEFINES INTERFACE-LIST.

03 INTERFACE-NAME OCCURS 1 TIMES PICTURE X(28).

01 OBJECT-ID-LIST.
03 FILLER PICTURE X(17)

VALUE "my_simple_object ".
01 OBJECT-ID-ARRAY REDEFINES OBJECT-ID-LIST.

03 OBJECT-IDENTIFIER OCCURS 1 TIMES PICTURE X(17).

01 IOR-REC-LEN PICTURE 9(09) BINARY
VALUE 2048.

01 IOR-REC-PTR POINTER.
VALUE NULL.

**
* Status and Obj values for the Interface(s)
**
01 SIMPLE-SIMPLEOBJECT-IOR-STAT PICTURE 9(02).
01 SIMPLE-SIMPLEOBJECT-OBJ POINTER

VALUE NULL.

COPY PROCPARM.

INIT.

1 CALL "ORBSTAT" USING ORBIX-STATUS-INFORMATION.

DISPLAY "Initializing the ORB".

2 CALL "ORBARGS" USING ARG-LIST
ARG-LIST-LEN
ORB-NAME
ORB-NAME-LEN.

SET WS-ORBARGS TO TRUE.
PERFORM CHECK-STATUS.

3 CALL "ORBSRVR" USING SERVER-NAME
SERVER-NAME-LEN.

SET WS-ORBSRVR TO TRUE.

Example 2: The Batch SIMPLESV Demonstration (Sheet 2 of 4)
29

CHAPTER 2 |
01 SERVER-NAME-LEN PICTURE 9(09) BINARY
VALUE 17.

01 INTERFACE-LIST.
03 FILLER PICTURE X(28)

VALUE "IDL:Simple/SimpleObject:1.0 ".
01 INTERFACE-NAMES-ARRAY REDEFINES INTERFACE-LIST.

03 INTERFACE-NAME OCCURS 1 TIMES PICTURE X(28).

01 OBJECT-ID-LIST.
03 FILLER PICTURE X(17)

VALUE "my_simple_object ".
01 OBJECT-ID-ARRAY REDEFINES OBJECT-ID-LIST.

03 OBJECT-IDENTIFIER OCCURS 1 TIMES PICTURE X(17).

01 IOR-REC-LEN PICTURE 9(09) BINARY
VALUE 2048.

01 IOR-REC-PTR POINTER.
VALUE NULL.

**
* Status and Obj values for the Interface(s)
**
01 SIMPLE-SIMPLEOBJECT-IOR-STAT PICTURE 9(02).
01 SIMPLE-SIMPLEOBJECT-OBJ POINTER

VALUE NULL.

COPY PROCPARM.

INIT.

1 CALL "ORBSTAT" USING ORBIX-STATUS-INFORMATION.

DISPLAY "Initializing the ORB".

2 CALL "ORBARGS" USING ARG-LIST
ARG-LIST-LEN
ORB-NAME
ORB-NAME-LEN.

SET WS-ORBARGS TO TRUE.
PERFORM CHECK-STATUS.

3 CALL "ORBSRVR" USING SERVER-NAME
SERVER-NAME-LEN.

SET WS-ORBSRVR TO TRUE.

Example 2: The Batch SIMPLESV Demonstration (Sheet 2 of 4)
 30

PERFORM CHECK-STATUS.

**
* Interface Section Block
**

* Generating IOR for interface Simple/SimpleObject
DISPLAY "Registering the Interface".

4 CALL "ORBREG" USING SIMPLE-SIMPLEOBJECT-INTERFACE.
SET WS-ORBREG TO TRUE.

OPEN OUTPUT SIMPLE-SIMPLEOBJECT-IOR.
COPY CHKFILE REPLACING

"X-IOR-STAT" BY SIMPLE-SIMPLEOBJECT-IOR-STAT.

DISPLAY "Creating the Object".
5 CALL "OBJNEW" USING SERVER-NAME

INTERFACE-NAME
OF INTERFACE-NAMES-ARRAY(1)
OBJECT-IDENTIFIER
OF OBJECT-ID-ARRAY(1)
SIMPLE-SIMPLEOBJECT-OBJ.

SET WS-OBJNEW TO TRUE.
PERFORM CHECK-STATUS.

6 CALL "OBJTOSTR" USING SIMPLE-SIMPLEOBJECT-OBJ
IOR-REC-PTR.

SET WS-OBJTOSTR TO TRUE.
PERFORM CHECK-STATUS.

CALL "STRGET" USING IOR-REC-PTR
IOR-REC-LEN
SIMPLE-SIMPLEOBJECT-REC.

SET WS-STRGET TO TRUE.
PERFORM CHECK-STATUS.

CALL "STRFREE" USING IOR-REC-PTR.
SET WS-STRFREE TO TRUE.
PERFORM CHECK-STATUS.

DISPLAY "Writing object reference to file".

WRITE SIMPLE-SIMPLEOBJECT-REC.

Example 2: The Batch SIMPLESV Demonstration (Sheet 3 of 4)
31

CHAPTER 2 |
Explanation of the batch
SIMPLESV program

The SIMPLESV program can be explained as follows:

1. ORBSTAT is called to register the ORBIX-STATUS-INFORMATION block that
is contained in the CORBA copybook. Registering the
ORBIX-STATUS-INFORMATION block allows the COBOL runtime to
populate it with exception information, if necessary.

2. ORBARGS is called to initialize a connection to the ORB.

3. ORBSRVR is called to set the server name.

4. ORBREG is called to register the IDL interface, SimpleObject, with the
Orbix COBOL runtime.

5. OBJNEW is called to create a persistent server object of the
SimpleObject type, with an object ID of my_simple_object.

6. OBJTOSTR is called to translate the object reference created by OBJNEW
into a stringified IOR. The stringified IOR is then written to the IORFILE
member.

COPY CHKFILE REPLACING
"X-IOR-STAT" BY SIMPLE-SIMPLEOBJECT-IOR-STAT.

CLOSE SIMPLE-SIMPLEOBJECT-IOR.
COPY CHKFILE REPLACING

"X-IOR-STAT" BY SIMPLE-SIMPLEOBJECT-IOR-STAT.

DISPLAY "Giving control to the ORB to process Requests".
7 CALL "COARUN".

SET WS-COARUN TO TRUE.
PERFORM CHECK-STATUS.

CALL "OBJREL" USING SIMPLE-SIMPLEOBJECT-OBJ.
SET WS-OBJREL TO TRUE.
PERFORM CHECK-STATUS.

EXIT-PRG.
STOP RUN.

**
* Check Errors Copybook
**
COPY CHKERRS.

Example 2: The Batch SIMPLESV Demonstration (Sheet 4 of 4)
 32

7. COARUN is called, to enter the ORB::run loop, to allow the ORB to
receive and process client requests.
33

CHAPTER 2 |
Building the Server

Location of the JCL Sample JCL used to compile and link the batch server mainline and server
implementation is in orbixhlq.DEMOS.COBOL.BUILD.JCL(SIMPLESB).

Resulting load module When this JCL has successfully executed, it results in a load module that is
contained in orbixhlq.DEMOS.COBOL.LOAD(SIMPLESV).
 34

Developing the Client

Overview This section describes the steps you must follow to develop the client
executable for your application.

Steps to develop the client The steps to develop the client application are:

Note: The Orbix E2A IDL compiler does not generate COBOL client stub
code.

Step Action

1 �Writing the Client� on page 36.

2 �Building the Client� on page 41.
35

CHAPTER 2 |
Writing the Client

The client program The next step is to write the client program, to implement the client. This
example uses the supplied SIMPLECL client demonstration.

Example of the SIMPLECL
program

The following is an example of the SIMPLECL program:

Example 3: The SIMPLECL Demonstration Program (Sheet 1 of 3)

IDENTIFICATION DIVISION.
PROGRAM-ID. SIMPLECL.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

COPY IORSLCT REPLACING
"X-IOR" BY SIMPLE-SIMPLEOBJECT-IOR
"X-IORFILE" BY "IORFILE"
"X-IOR-STAT" BY SIMPLE-SIMPLEOBJECT-IOR-STAT.

DATA DIVISION.
FILE SECTION.

COPY IORFD REPLACING
"X-IOR" BY SIMPLE-SIMPLEOBJECT-IOR
"X-REC" BY SIMPLE-SIMPLEOBJECT-REC.

WORKING-STORAGE SECTION.

COPY SIMPLE.
COPY CORBA.

01 WS-SIMPLE-IOR PICTURE X(2048).
01 SIMPLE-IOR-LENGTH PICTURE 9(9) BINARY

VALUE 2048.
01 SIMPLE-SIMPLEOBJECT-IOR-STAT PICTURE 9(02).
01 SIMPLE-SIMPLEOBJECT-OBJ POINTER

VALUE NULL.
01 ARG-LIST PICTURE X(1)

VALUE SPACES.
01 ARG-LIST-LEN PICTURE 9(09) BINARY

VALUE 0.
 36

01 ORB-NAME PICTURE X(10)
VALUE "simple_orb".

01 ORB-NAME-LEN PICTURE 9(09) BINARY
VALUE 10.

01 IOR-REC-PTR POINTER
VALUE NULL.

01 IOR-REC-LEN PICTURE 9(09) BINARY
VALUE 2048.

COPY PROCPARM.
1 CALL "ORBSTAT" USING ORBIX-STATUS-INFORMATION.

* ORB initialization
DISPLAY "Initializing the ORB".

2 CALL "ORBARGS" USING ARG-LIST
ARG-LIST-LEN
ORB-NAME
ORB-NAME-LEN.

SET WS-ORBARGS TO TRUE.
PERFORM CHECK-STATUS.

* Register interface TypeTest
DISPLAY "Registering the Interface".

3 CALL "ORBREG" USING SIMPLE-SIMPLEOBJECT-INTERFACE.
SET WS-ORBREG TO TRUE.
PERFORM CHECK-STATUS.

*
4 ** Read in the IOR from a file which has been populated

** by the server program.
*

OPEN INPUT SIMPLE-SIMPLEOBJECT-IOR.
COPY CHKFILE REPLACING

"X-IOR-STAT" BY SIMPLE-SIMPLEOBJECT-IOR-STAT.

DISPLAY "Reading object reference from file".
READ SIMPLE-SIMPLEOBJECT-IOR.
COPY CHKFILE REPLACING

"X-IOR-STAT" BY SIMPLE-SIMPLEOBJECT-IOR-STAT.

MOVE SIMPLE-SIMPLEOBJECT-REC TO WS-SIMPLE-IOR.

* IOR Record read successfully
CLOSE SIMPLE-SIMPLEOBJECT-IOR.
COPY CHKFILE REPLACING

Example 3: The SIMPLECL Demonstration Program (Sheet 2 of 3)
37

CHAPTER 2 |
"X-IOR-STAT" BY SIMPLE-SIMPLEOBJECT-IOR-STAT.
* Set the COBOL pointer to point to the IOR string

5 CALL "STRSET" USING IOR-REC-PTR
IOR-REC-LEN
WS-SIMPLE-IOR.

SET WS-STRSET TO TRUE.
PERFORM CHECK-STATUS.

* Obtain object reference from the IOR
6 CALL "STRTOOBJ" USING IOR-REC-PTR

SIMPLE-SIMPLEOBJECT-OBJ

SET WS-STRTOOBJ TO TRUE.
PERFORM CHECK-STATUS.

* Releasing the memory
CALL "STRFREE" USING IOR-REC-PTR.
SET WS-STRFREE TO TRUE.
PERFORM CHECK-STATUS.

SET SIMPLE-SIMPLEOBJECT-CALL-ME TO TRUE
DISPLAY "invoking Simple::" SIMPLE-SIMPLEOBJECT-OPERATION.

7 CALL "ORBEXEC" USING SIMPLE-SIMPLEOBJECT-OBJ
SIMPLE-SIMPLEOBJECT-OPERATION
SIMPLE-SIMPLEOBJECT-70FE-ARGS
SIMPLE-USER-EXCEPTIONS.

SET WS-ORBEXEC TO TRUE.
PERFORM CHECK-STATUS.

CALL "OBJREL" USING SIMPLE-SIMPLEOBJECT-OBJ.
SET WS-OBJREL TO TRUE.
PERFORM CHECK-STATUS.

DISPLAY "Simple demo complete.".

EXIT-PRG.
*========.
STOP RUN.

**
* Check Errors Copybook
**

COPY CHKERRS.

Example 3: The SIMPLECL Demonstration Program (Sheet 3 of 3)
 38

Explanation of the SIMPLECL
program

The SIMPLECL program can be explained as follows:

1. ORBSTAT is called to register the ORBIX-STATUS-INFORMATION block that
is contained in the CORBA copybook. Registering the
ORBIX-STATUS-INFORMATION block allows the COBOL runtime to
populate it with exception information, if necessary.

You can use the ORBIX-STATUS-INFORMATION data item (in the CORBA
copybook) to check the status of any Orbix call. The EXCEPTION-NUMBER
numeric data item is important in this case. If this item is 0, it means
the call was successful. Otherwise, EXCEPTION-NUMBER holds the
system exception number that occurred. You should test this data item
after any Orbix call.

2. ORBARGS is called to initialize a connection to the ORB.

3. ORBREG is called to register the IDL interface with the Orbix COBOL
runtime.

4. The client reads the stringified object reference for the object from the
PDS member that has been populated by the server. For the purposes
of this example, the IOR member is contained in
orbixhlq.DEMOS.IORS(SIMPLE).

5. STRSET is called to create an unbounded string to which the stringified
object reference is copied.

6. STRTOOBJ is called to create an object reference to the server object
that is represented by the IOR. This must be done to allow operation
invocations on the server. The STRTOOBJ call takes an interoperable
stringified object reference and produces an object reference pointer.
This pointer is used in all method invocations. See the CORBA
Programmerís Reference, C++ for more details about stringified
object references

7. After the object reference is created, ORBEXEC is called to invoke
operations on the server object represented by that object reference.
You must pass the object reference, the operation name, the argument
description packet, and the user exception buffer. The operation name
must have at least one trailing space. The generated operation
condition names found in the SIMPLE copybook already handle this.
39

CHAPTER 2 |
The same argument description is used by the server, and is found in
the SIMPLE copybook. For example, See
orbixhlq.DEMOS.COBOL.COPYLIB(SIMPLE).

Location of the SIMPLECL
program

You can find a complete version of the SIMPLECL client program in
orbixhlq.DEMOS.COBOL.SRC(SIMPLECL).
 40

Building the Client

Location of the JCL Sample JCL used to compile and link the client can be found in the third
step of orbixhlq.DEMOS.COBOL.BUILD.JCL(SIMPLECB).

Resulting load module When the JCL has successfully executed, it results in a load module that is
contained in orbixhlq.DEMOS.COBOL.LOAD(SIMPLECL).
41

CHAPTER 2 |
Running the Application

Introduction This section describes the steps you must follow to run your application. It
also provides an example of the output produced by the client and server.

Steps to run the application The steps to run the application are:

Note: This example involves running a COBOL client and COBOL server.
You could, however, choose to run a COBOL server and a C++ client, or a
COBOL client and a C++ server. Substitution of the appropriate JCL is all
that is required in the following steps to mix clients and servers in different
languages.

Step Action

1 �Starting the Orbix E2A Locator Daemon� on page 43 (if it has
not already been started).

2 �Starting the Orbix E2A Node Daemon� on page 44 (if it has
not already been started).

3 �Running the Server and Client� on page 45.
 42

Starting the Orbix E2A Locator Daemon

Overview An Orbix E2A locator daemon must be running on the server�s location
domain before you try to run your application. The Orbix E2A locator
daemon is a program that implements several components of the ORB,
including the Implementation Repository. The locator runs in its own
address space on the server host, and provides services to the client and
server, both of which need to communicate with it.

When you start the Orbix E2A locator daemon, it appears as an active job
waiting for requests. See the CORBA Administratorís Guide for more details
about the locator daemon.

JCL to start the Orbix E2A locator
daemon

If the Orbix E2A locator daemon is not already running, you can use the JCL
in orbixhlq.JCL(LOCATOR) to start it.

Locator daemon configuration The Orbix E2A locator daemon uses the Orbix E2A configuration member for
its settings. The JCL that you use to start the locator daemon uses a sample
configuration member that is provided in orbixhlq.DOMAINS(FILEDOMA).
43

CHAPTER 2 |
Starting the Orbix E2A Node Daemon

Overview An Orbix E2A node daemon must be running on the server�s location
domain before you try to run your application. The node daemon acts as the
control point for a single machine in the system. Every machine that will run
an application server must be running a node daemon. The node daemon
starts, monitors, and manages the application servers running on that
machine. The locator daemon relies on the node daemons to start processes
and inform it when new processes have become available.

When you start the Orbix E2A node daemon, it appears as an active job
waiting for requests. See the CORBA Administratorís Guide for more details
about the node daemon.

JCL to start the Orbix E2A node
daemon

If the Orbix E2A node daemon is not already running, you can use the JCL in
orbixhlq.JCL(NODEDAEM) to start it.

Node daemon configuration The Orbix E2A node daemon uses the Orbix E2A configuration member for
its settings. The JCL that you use to start the node daemon uses a
configuration member that is provided in orbixhlq.DOMAINS(FILEDOMA).
 44

Running the Server and Client

Overview This section describes how to run the SIMPLE demonstration.

JCL to run the server To run the supplied SIMPLESV server application, use the following JCL:

IOR member for the server When you run the server, it automatically writes its IOR to a PDS member
that is subsequently used by the client. For the purposes of this example,
the IOR member is contained in orbixhlq.DEMOS.IORS(SIMPLE).

JCL to run the client After you have started the server and made it available to the network, you
can use the following JCL to run the supplied SIMPLECL client application:

orbixhlq.DEMOS.COBOL.JCL(SIMPLESV)

Note: You can use the OS/390 STOP operator command to stop the
server.

orbixhlq.DEMOS.COBOL.RUN.JCL(SIMPLECL)
45

CHAPTER 2 |
Application Output

Server output The following is an example of the output produced by the server for the
SIMPLE demonstration:

Client output The following is an example of the output produced by the SIMPLECL client:

Result If you receive the preceding client and server output, it means you have
successfully created an Orbix E2A COBOL client-server batch application.

Initializing the ORB
Registering the Interface
Creating the Object
Writing object reference to file
Giving control to the ORB to process Requests
Simple::call_me invoked

Note: All but the last line of the preceding server output is produced by
the SIMPLESV server mainline program. The final line is produced by the
SIMPLES server implementation program.

Initializing the ORB
Registering the Interface
Reading object reference from file
invoking Simple::call_me
Simple demo complete.
 46

Application Address Space Layout

Overview Figure 3 is a graphical overview of the address space layout for an Orbix
E2A COBOL application running in batch in a native OS/390 environment.
This is shown for the purposes of example and is not meant to reflect a
real-world scenario requiring the Orbix E2A Application Server Platform
Mainframe Edition.

Figure 3: Address Space Layout for an Orbix E2A COBOL Application

Server Process (including TCP/IP)

ORB

COBOL Runtime

Server Mainline

Entry point for launch
includes calls to ORBSTAT, ORBARGS,

ORBSRVR, ORBREG, OBJNEW, OBJTOSTR,
and COARUN

Server Implementation

DISPATCH - entry point for all IDL operations.

COAREQ is called to determine which COBOL
section (that is, IDL operations) to execute.

Each section includes COAGET (to move data
from COBOL runtime to Working Storage) and
COAPUT (to move data from Working Storage

to COBOL runtime).

Working Storage
used by COAGET

and COAPUT

Locator Daemon Process (including TCP/IP)

Locator Daemon

Client Process (including TCP/IP)

ORB

COBOL Runtime

Client Implementation

ORBSTAT, ORBARGS, ORBREG, and
STRTOOBJ calls.

An ORBEXEC call for each IDL operation to be
invoked on the CORBA object.

Working Storage used by
ORBEXEC calls

OS/390 Environment

Node Daemon Process (including TCP/IP)

Node Daemon
47

CHAPTER 2 |
Explanation of the batch server
process

The server-side ORB, COBOL runtime, server mainline (launch entry point)
and server implementation (DISPATCH entry point) are linked into a single
load module referred to as the "server". The COBOL runtime marshals data
to and from the server implementation working storage, which means there
is language-specific translation between C++ and COBOL.

The server runs within its own address space. Link the code as STATIC and
NOREENTRANT (that is, not re-entrant).

The server uses the TCP/IP protocol to communicate (through the
server-side ORB) with both the client and the locator daemon.

For an example and details of:

ï The APIs called by the server mainline, see �Explanation of the batch
SIMPLESV program� on page 32 and �API Reference� on page 263.

ï The APIs called by the server implementation, see �Explanation of the
batch SIMPLES program� on page 27 and �API Reference� on
page 263.

Explanation of the daemon
processes

The locator daemon and node daemon each runs in its own address space.
See �Location Domains� on page 10 for more details of the locator and node
daemons.

The locator daemon and node daemon use the TCP/IP protocol to
communicate with each other. The locator daemon also uses the TCP/IP
protocol to communicate with the server through the server-side ORB.

Explanation of the batch client
process

The client-side ORB, COBOL runtime, and client implementation are linked
into a single load module referred to as the �client�. The client runs within
its own address space.

The client (through the client-side ORB) uses TCP/IP to communicate with
the server.

For an example and details of the APIs called by the client, see �Explanation
of the SIMPLECL program� on page 39 and �API Reference� on page 263.
 48

CHAPTER 3

Getting Started in
IMS
This chapter introduces IMS application programming with
Orbix E2A, by showing how to use Orbix E2A to develop a
simple distributed application that features a COBOL client
running in batch and a COBOL server running in IMS.

In this chapter This chapter discusses the following topics:

Overview and Setup Requirements page 50

Developing the Application Interfaces page 56

Developing the Server page 62

Developing and Running the Client page 76

Note: The example provided in this chapter requires use of the IMS
adapter, which is supplied as part of the Orbix E2A Application Server
Platform Mainframe Edition. See the IMS Adapter Administratorís Guide
for more details about the IMS adapter.
49

CHAPTER 3 |
Overview and Setup Requirements

Overview This section provides an overview of the main steps involved in creating an
Orbix E2A COBOL application. It describes important steps that you must
perform before you begin. It also introduces the supplied SIMPLE
demonstration, and outlines where you can find the various source code and
JCL elements for it.

Steps to create an application The main steps to create an Orbix E2A COBOL application are:

This chapter describes in detail how to perform each of these steps.

The Simple demonstration This chapter describes how to develop a simple client-server application
that consists of:

ï An Orbix E2A COBOL server that implements a simple persistent
POA-based server.

ï An Orbix E2A COBOL client that uses the clearly defined object
interface, SimpleObject, to communicate with the server.

The client and server use the Internet Inter-ORB Protocol (IIOP), which runs
over TCP/IP, to communicate. As already stated, the SIMPLE demonstration
is not meant to reflect a real-world scenario requiring the Orbix E2A
Application Server Platform Mainframe Edition, because the client and
server are written in the same language and running on the same platform.

Step Action

1 �Developing the Application Interfaces� on page 56.

2 �Developing the Server� on page 62.

3 �Developing and Running the Client� on page 76.
 50

The demonstration server The server runs in an IMS region. It accepts and processes requests from the
client across the network, and communicates with the client via the IMS
adapter.

See �Location of supplied code and JCL� on page 51 for details of where
you can find an example of the supplied server. See �Developing the Server�
on page 62 for more details of how to develop the server.

The demonstration client The client runs as a batch job. It accesses and requests data from the
server. When the client invokes a remote operation, a request message is
sent from the client to the server via the IMS adapter. When the operation
has completed, a reply message is sent back to the client via the IMS
adapter. This completes a single remote CORBA invocation.

See �Location of supplied code and JCL� on page 51 for details of where
you can find an example of the supplied client. See �Developing and
Running the Client� on page 76 for more details of how to develop the
client.

Location of supplied code and JCL All the source code and JCL components needed to create and run the IMS
SIMPLE demonstration have been provided with your installation. Apart from
site-specific changes to some JCL, these do not require editing.

Table 5 provides a summary of the code elements and JCL components that
are relevant to the IMS SIMPLE demonstration (where orbixhlq represents
your installation�s high-level qualifier).

Table 5: Supplied Code and JCL (Sheet 1 of 2)

Location Description

orbixhlq.DEMOS.IDL(SIMPLE) This is the supplied IDL.

orbixhlq.DEMOS.IMS.COBOL.SRC(SIMPLESV) This is the source code for the IMS server mainline
program, which is generated when you run the JCL in
orbixhlq.DEMOS.IMS.COBOL.BUILD.JCL(SIMPLIDL).
(The IMS server mainline code is not shipped with
the product. You must run the SIMPLIDL JCL to
generate it.)

orbixhlq.DEMOS.IMS.COBOL.SRC(SIMPLES) This is the source code for the IMS server
implementation program.
51

CHAPTER 3 |
orbixhlq.DEMOS.COBOL.SRC(SIMPLECL) This is the source code for the batch client program.

orbixhlq.DEMOS.IMS.COBOL.BUILD.JCL(SIMPLIDL) This JCL runs the Orbix E2A IDL compiler, to
generate COBOL source and copybooks for the IMS
server. This JCL specifies the -S and -TIMS compiler
arguments, to generate IMS server mainline code. It
does not specify the -Z argument, which generates
server implementation code.

This JCL also specifies the -mfa and
-ttransaction_name arguments, to generate the
adapter mapping file, which is then written to
orbixhlq.DEMOS.IMS.MFAMAP(SIMPLEA). The contents
of the SIMPLEA member are
(Simple/SimpleObject,call_me,SIMPLESV) (that is,
fully qualifed interface name followed by operation
name followed by IMS transaction name). See the
IMS Adapter Administratorís Guide for more details
about generating adapter mapping files.

orbixhlq.DEMOS.COBOL.BUILD.JCL(SIMPLECB) This JCL compiles the client program.

orbixhlq.DEMOS.IMS.COBOL.BUILD.JCL(SIMPLESB) This JCL compiles and links the IMS server mainline
and IMS server implementation programs.

orbixhlq.DEMOS.IMS.COBOL.BUILD.JCL(SIMPLREG) This JCL registers the IDL in the Interface Repository.

orbixhlq.DEMOS.IMS.COBOL.BUILD.JCL(SIMPLIOR) This JCL obtains the IOR that the client of the IMS
server requires to locate the IMS adapter.

orbixhlq.DEMOS.COBOL.RUN.JCL(SIMPLECL) This JCL runs the batch client.

Note: Other code elements and JCL components are provided for the
batch and CICS versions of the SIMPLE demonstration. See �Getting
Started in Batch� on page 13 and �Getting Started in CICS� on page 83 for
more details of these.

Table 5: Supplied Code and JCL (Sheet 2 of 2)

Location Description
 52

Supplied copybooks Table 6 provides a summary of the various copybooks supplied with your
product installation that are relevant to IMS. In Table 6, servers means IMS
servers, and clients means batch clients. Again, orbixhlq represents your
installation�s high-level qualifier.

Table 6: Supplied Copybooks (Sheet 1 of 3)

Location Description

orbixhlq.INCLUDE.COPYLIB(CHKERRS) This is used by clients. It is not used by IMS servers.
It contains a COBOL function that can be called by
the client, to check if an exception has occurred, and
to report that exception.

orbixhlq.INCLUDE.COPYLIB(CERRSMFA) This is used by servers. It contains a COBOL function
that can be called by the IMS server, to check if an
exception has occurred, and to report that exception.

orbixhlq.INCLUDE.COPYLIB(CORBA) This is used both by clients and servers. It contains
various Orbix E2A COBOL definitions, such as
REQUEST-INFO used by the COAREQ function, and
ORBIX-STATUS-INFORMATION which is used to register
and report exceptions raised by the COBOL runtime.

orbixhlq.INCLUDE.COPYLIB(CORBATYP) This is used both by clients and servers. It contains
the COBOL typecode representation for IDL basic
types.

orbixhlq.INCLUDE.COPYLIB(IORSLCT) This is used by clients. It is not used by IMS servers.
It contains the COBOL SELECT statement entry for file
processing, for use with the COPY…REPLACING
statement.

orbixhlq.INCLUDE.COPYLIB(IORFD) This is used by clients. It is not used by IMS servers.
It contains the COBOL FD statement entry for file
processing, for use with the COPY…REPLACING
statement.

orbixhlq.INCLUDE.COPYLIB(CHKFILE) This is used by clients. It is not used by IMS servers.
It is used for file handling error checking.
53

CHAPTER 3 |
orbixhlq.INCLUDE.COPYLIB(PROCPARM) This is used by clients. It is not used by IMS servers.
It contains the appropriate definitions for a COBOL
program to accept parameters from the JCL for use
with the ORBARGS API (that is, the argument-string
parameter).

orbixhlq.DEMOS.IMS.COBOL.COPYLIB This PDS is used to store all IMS copybooks that are
generated by the Orbix E2A IDL compiler when you
run the supplied SIMPLIDL JCL for the IMS
demonstration. It also contains copybooks with
Working Storage data definitions and Procedure
Division paragraphs for the nested sequences
demonstration.

orbixhlq.DEMOS.IMS.MFAMAP This PDS is empty at installation time. It is used to
store the IMS adapter mapping member that is
generated by the Orbix E2A IDL compiler when you
run the supplied SIMPLIDL JCL.

orbixhlq.INCLUDE.COPYLIB(LSIMSPCB) This is specific to IMS and is used in IMS server
mainline programs. It contains the linkage section
definitions of the program communication blocks
(PCBs).

orbixhlq.INCLUDE.COPYLIB(UPDTPCBS) This is specific to IMS and is used in IMS server
mainline programs. It contains a paragraph that is
used to move the PCB data defined in the linkage
section (in the LSIMSPCB copybook) to the
corresponding working storage defined data (in the
WSIMSPCB copybook).

Table 6: Supplied Copybooks (Sheet 2 of 3)

Location Description
 54

Checking JCL components When creating the SIMPLE application, check that each step involved within
the separate JCL components completes with a condition code of zero. If the
condition codes are not zero, establish the point and cause of failure. The
most likely cause is the site-specific JCL changes required for the compilers.
Ensure that each high-level qualifier throughout the JCL reflects your
installation.

orbixhlq.INCLUDE.COPYLIB(WSIMSPCB) This is specific to IMS and is used in IMS server
mainline and implementation programs. It contains
the working storage definitions of the PCB data. The
server mainline uses the paragraph defined in the
UPDTPCBS copybook, to populate the WSIMSPCB
copybook with PCB data from the LSIMSPCB
copybook. This allows the server implementation to
access the PCB data, if required.

Note: This data is populated in the supplied
demonstrations, but it is not used.

Table 6: Supplied Copybooks (Sheet 3 of 3)

Location Description
55

CHAPTER 3 |
Developing the Application Interfaces

Overview This section describes the steps you must follow to develop the IDL
interfaces for your application. It first describes how to define the IDL
interfaces for the objects in your system. It then describes how to generate
COBOL source and copybooks from IDL interfaces, and provides a
description of the members generated from the supplied SimpleObject
interface.

Steps to develop application
interfaces

The steps to develop the interfaces to your application are:

Step Action

1 Define public IDL interfaces to the objects required in your
system.

See �Defining IDL Interfaces� on page 57.

2 Use the Orbix E2A IDL compiler to generate COBOL source
code and copybooks from the defined IDL.

See �Generating COBOL Source and Copybooks� on page 58.
 56

Defining IDL Interfaces

Defining the IDL The first step in writing an Orbix E2A program is to define the IDL interfaces
for the objects required in your system. The following is an example of the
IDL for the SimpleObject interface that is supplied in
orbixhlq.DEMOS.IDL(SIMPLE):

Explanation of the IDL The preceding IDL declares a SimpleObject interface that is scoped (that is,
contained) within the Simple module. This interface exposes a single
call_me() operation. This IDL definition provides a language-neutral
interface to the CORBA Simple::SimpleObject type.

How the demonstration uses this
IDL

For the purposes of this example, the SimpleObject CORBA object is
implemented in COBOL in the supplied SIMPLES server application. The
server application creates a persistent server object of the SimpleObject
type, and publishes its object reference to a PDS member. The client
application must then locate the SimpleObject object by reading the
interoperable object reference (IOR) from the relevant PDS member. The
client invokes the call_me() operation on the SimpleObject object, and
then exits.

// IDL
module Simple
{

interface SimpleObject
{

void
call_me();

};
};
57

CHAPTER 3 |
Generating COBOL Source and Copybooks

The Orbix E2A IDL compiler You can use the Orbix E2A IDL compiler to generate COBOL source and
copybooks from IDL definitions.

Orbix E2A IDL compiler
configuration

The Orbix E2A IDL compiler uses the Orbix E2A configuration member for
its settings. The SIMPLIDL JCL that runs the compiler uses a configuration
member provided in orbixhlq.CONFIG(IDL). See �Orbix E2A IDL Compiler�
 58

Generated source code members Table 7 shows the server source code members that the Orbix E2A IDL
compiler generates, based on the defined IDL.

Table 7: Generated Server Source Code Members

Member JCL Keyword
Parameter

Description

idlmembernameS IMPL This is the IMS server
implementation source code
member. It contains stub
paragraphs for all the callable
operations.

This is only generated if you
specify both the -Z and -TIMS
arguments with the IDL compiler.

idlmembernameSV IMPL This is the IMS server mainline
source code member.

This is only generated if you
specify both the -S and -TIMS
arguments with the IDL compiler.

Note: For the purposes of this example, the SIMPLES server
implementation is already provided in your product installation. Therefore,
the -Z IDL compiler argument used to generate it is not specified in the
supplied SIMPLIDL JCL. The SIMPLESV server mainline is not already
provided, so the -S argument used to generate it is specified in the
supplied JCL. See �Orbix E2A IDL Compiler� on page 237 for more details
of the -S, -Z, and -TIMS arguments used to generate IMS server code.
59

CHAPTER 3 |
Generated COBOL copybooks Table 8 shows the COBOL copybooks that the Orbix E2A IDL compiler
generates, based on the defined IDL.

How IDL maps to COBOL
copybooks

Each IDL interface maps to a group of COBOL data definitions. There is one
definition for each IDL operation. A definition contains each of the
parameters for the relevant IDL operation in their corresponding COBOL
representation. See �IDL-to-COBOL Mapping� on page 161 for details of
how IDL types map to COBOL.

Table 8: Generated COBOL Copybooks

Copybook JCL Keyword
Parameter

Description

idlmembername COPYLIB This copybook contains data
definitions that are used for
working with operation
parameters and return values for
each interface defined in the IDL
member.

The name for this copybook does
not take a suffix.

idlmembernameX COPYLIB This copybook contains data
definitions that are used by the
COBOL runtime to support the
interfaces defined in the IDL
member.

This copybook is automatically
included in the idlmembername
copybook.

idlmembernameD COPYLIB This copybook contains
procedural code for performing
the correct paragraph for the
requested operation.

This copybook is automatically
included in the idlmembernameS
source code member.
 60

Attributes map to two operations (get and set), and readonly attributes map
to a single get operation.

Generated adapter mapping
member

Table 9 shows the IMS adapter mapping member that the Orbix E2A IDL
compiler generates, based on the defined IDL.

Member name restrictions Generated source code member, copybook, and mapping member names
are all based on the IDL member name. If the IDL member name exceeds
six characters, the Orbix E2A IDL compiler uses only the first six characters
of the IDL member name when generating the other member names. This
allows space for appending the two-character SV suffix to the name for the
server mainline member, while allowing it to adhere to the eight-character
maximum size limit for OS/390 member names. Consequently, all other
member names also use only the first six characters of the IDL member
name, followed by their individual suffixes, as appropriate.

Location of demonstration
copybooks and mapping member

You can find examples of the copybooks and IMS adapter mapping member
generated for the SIMPLE demonstration in the following locations:

ï orbixhlq.DEMOS.IMS.COBOL.COPYLIB(SIMPLE)

ï orbixhlq.DEMOS.IMS.COBOL.COPYLIB(SIMPLEX)

ï orbixhlq.DEMOS.IMS.COBOL.COPYLIB(SIMPLED)

ï orbixhlq.DEMOS.IMS.MFAMAP(SIMPLEA)

Table 9: Generated IMS Adapter Mapping Member

Copybook JCL Keyword
Parameter

Description

idlmembernameA MEMBER This is a simple text file that
determines what interfaces and
operations the IMS adapter
supports, and the IMS
transaction names to which it
should map each IDL operation.

Note: These copybooks and mapping member are not shipped with your
product installation. They are generated when you run the supplied
SIMPLIDL JCL, to run the Orbix E2A IDL compiler.
61

CHAPTER 3 |
Developing the Server

Overview This section describes the steps you must follow to develop the IMS server
executable for your application.

Steps to develop the server The steps to develop the server application are:

Step Action

1 �Writing the Server Implementation� on page 63.

2 �Writing the Server Mainline� on page 67.

3 �Building the Server� on page 72.

4 �Preparing the Server to Run in IMS� on page 73.
 62

Writing the Server Implementation

The server implementation
program

You must implement the server interface by writing a COBOL program that
implements each operation in the idlmembername copybook. For the
purposes of this example, you must write a COBOL program that
implements each operation in the SIMPLE copybook. When you specify the
-Z and -TIMS arguments with the Orbix E2A IDL compiler in this case, it
generates a skeleton program called SIMPLES, which is a useful starting
point.

Example of the IMS SIMPLES
program

The following is an example of the IMS SIMPLES program:

Example 4: The IMS SIMPLES Demonstration (Sheet 1 of 2)

**
* Identification Division
**
IDENTIFICATION DIVISION.
PROGRAM-ID. SIMPLES.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
COPY SIMPLE.
COPY CORBA.

1 COPY WSIMSPCB.

01 WS-INTERFACE-NAME PICTURE X(30).
01 WS-INTERFACE-NAME-LENGTH PICTURE 9(09) BINARY

VALUE 30.

**
* Procedure Division
**
PROCEDURE DIVISION.

2 ENTRY "DISPATCH".

3 CALL "COAREQ" USING REQUEST-INFO.
SET WS-COAREQ TO TRUE.
PERFORM CHECK-STATUS.
63

CHAPTER 3 |
4 * Resolve the pointer reference to the interface name which is
* the fully scoped interface name
* Note make sure it can handle the max interface name length

CALL "STRGET" USING INTERFACE-NAME
WS-INTERFACE-NAME-LENGTH
WS-INTERFACE-NAME.

SET WS-STRGET TO TRUE.
PERFORM CHECK-STATUS.

**
* Interface(s) evaluation:
**

MOVE SPACES TO SIMPLE-SIMPLEOBJECT-OPERATION.

EVALUATE WS-INTERFACE-NAME
WHEN 'IDL:Simple/SimpleObject:1.0'

5 * Resolve the pointer reference to the operation information
CALL "STRGET" USING OPERATION-NAME

SIMPLE-S-3497-OPERATION-LENGTH
SIMPLE-SIMPLEOBJECT-OPERATION

SET WS-STRGET TO TRUE
PERFORM CHECK-STATUS
DISPLAY "Simple::" SIMPLE-SIMPLEOBJECT-OPERATION

"invoked"
END-EVALUATE.

6 COPY SIMPLED.

GOBACK.

7 DO-SIMPLE-SIMPLEOBJECT-CALL-ME.
CALL "COAGET" USING SIMPLE-SIMPLEOBJECT-70FE-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

CALL "COAPUT" USING SIMPLE-SIMPLEOBJECT-70FE-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

**
* Check Errors Copybook
**

8 COPY CERRSMFA.

Example 4: The IMS SIMPLES Demonstration (Sheet 2 of 2)
 64

Explanation of the IMS SIMPLES
program

The SIMPLES program can be explained as follows:

1. The COPY WSIMSPCB statement provides access to IMS PCBs.

2. The DISPATCH logic is automatically coded for you, and the bulk of the
code is contained in the SIMPLED copybook. When an incoming request
arrives from the network, it is processed by the ORB and a call is made
to the DISPATCH entry point.

3. COAREQ is called to provide information about the current invocation
request, which is held in the REQUEST-INFO block that is contained in
the CORBA copybook.

COAREQ is called once for each operation invocation�after a request
has been dispatched to the server, but before any calls are made to
access the parameter values.

4. STRGET is called to copy the characters in the unbounded string pointer
for the interface name to the string item representing the fully scoped
interface name.

5. STRGET is called again to copy the characters in the unbounded string
pointer for the operation name to the string item representing the
operation name.

6. The procedural code used to perform the correct paragraph for the
requested operation is copied into the program from the SIMPLED
copybook.

7. Each operation has skeleton code, with appropriate calls to COAPUT and
COAGET to copy values to and from the COBOL structures for that
operation�s argument list. You must provide a correct implementation
for each operation. You must call COAGET and COAPUT, even if your
operation takes no parameters and returns no data. You can simply
pass in a dummy area as the parameter list.

8. The IMS server implementation uses a COPY CERRSMFA statement
instead of COPY CHKERRS.

Note: The supplied SIMPLES program is only a suggested way of
implementing an interface. It is not necessary to have all operations
implemented in the same COBOL program.
65

CHAPTER 3 |
Location of the IMS SIMPLES
program

You can find a complete version of the IMS SIMPLES server implementation
program in orbixhlq.DEMOS.IMS.COBOL.SRC(SIMPLES).
 66

Writing the Server Mainline

The server mainline program The next step is to write the server mainline program in which to run the
server implementation. For the purposes of this example, when you specify
the -S and -TIMS arguments with the Orbix E2A IDL compiler, it generates a
program called SIMPLESV, which contains the server mainline code.

Example of the IMS SIMPLESV
program

The following is an example of the IMS SIMPLESV program:

Note: Unlike the batch server mainline, the IMS server mainline does not
have to create and store stringified object references (IORs) for the
interfaces that it implements, because this is handled by the IMS adapter.

Example 5: The IMS SIMPLESV Demonstration (Sheet 1 of 3)

IDENTIFICATION DIVISION.
PROGRAM-ID. SIMPLESV.
ENVIRONMENT DIVISION.
DATA DIVISION.

WORKING-STORAGE SECTION.

COPY SIMPLE.
COPY CORBA.
COPY WSIMSPCB.

01 ARG-LIST PICTURE X(01)
VALUE SPACES.

01 ARG-LIST-LEN PICTURE 9(09) BINARY
VALUE 0.

01 ORB-NAME PICTURE X(10)
VALUE "simple_orb".

01 ORB-NAME-LEN PICTURE 9(09) BINARY
VALUE 10.

01 SERVER-NAME PICTURE X(07)
VALUE "simple ".

01 SERVER-NAME-LEN PICTURE 9(09) BINARY
VALUE 6.
67

CHAPTER 3 |
01 INTERFACE-LIST.
03 FILLER PICTURE X(28)

VALUE "IDL:Simple/SimpleObject:1.0 ".
01 INTERFACE-NAMES-ARRAY REDEFINES INTERFACE-LIST.

03 INTERFACE-NAME OCCURS 1 TIMES PICTURE X(28).

01 OBJECT-ID-LIST.
03 FILLER PICTURE X(27)

VALUE "Simple/SimpleObject_object ".
01 OBJECT-ID-ARRAY REDEFINES OBJECT-ID-LIST.

03 OBJECT-IDENTIFIER OCCURS 1 TIMES PICTURE X(27).

**
* Object values for the Interface(s)
**
01 SIMPLE-SIMPLEOBJECT-OBJ POINTER

VALUE NULL.

COPY LSIMSPCB.

PROCEDURE DIVISION USING LS-IO-PCB, LS-ALT-PCB.

INIT.
PERFORM UPDATE-WS-PCBS.

1 CALL "ORBSTAT" USING ORBIX-STATUS-INFORMATION.
SET WS-ORBSTAT TO TRUE.
PERFORM CHECK-STATUS.

2 CALL "ORBARGS" USING ARG-LIST
ARG-LIST-LEN
ORB-NAME
ORB-NAME-LEN.

SET WS-ORBARGS TO TRUE.
PERFORM CHECK-STATUS.

3 CALL "ORBSRVR" USING SERVER-NAME
SERVER-NAME-LEN.

SET WS-ORBSRVR TO TRUE.
PERFORM CHECK-STATUS.

**
* Interface Section Block
**

Example 5: The IMS SIMPLESV Demonstration (Sheet 2 of 3)
 68

01 INTERFACE-LIST.
03 FILLER PICTURE X(28)

VALUE "IDL:Simple/SimpleObject:1.0 ".
01 INTERFACE-NAMES-ARRAY REDEFINES INTERFACE-LIST.

03 INTERFACE-NAME OCCURS 1 TIMES PICTURE X(28).

01 OBJECT-ID-LIST.
03 FILLER PICTURE X(27)

VALUE "Simple/SimpleObject_object ".
01 OBJECT-ID-ARRAY REDEFINES OBJECT-ID-LIST.

03 OBJECT-IDENTIFIER OCCURS 1 TIMES PICTURE X(27).

**
* Object values for the Interface(s)
**
01 SIMPLE-SIMPLEOBJECT-OBJ POINTER

VALUE NULL.

COPY LSIMSPCB.

PROCEDURE DIVISION USING LS-IO-PCB, LS-ALT-PCB.

INIT.
PERFORM UPDATE-WS-PCBS.

1 CALL "ORBSTAT" USING ORBIX-STATUS-INFORMATION.
SET WS-ORBSTAT TO TRUE.
PERFORM CHECK-STATUS.

2 CALL "ORBARGS" USING ARG-LIST
ARG-LIST-LEN
ORB-NAME
ORB-NAME-LEN.

SET WS-ORBARGS TO TRUE.
PERFORM CHECK-STATUS.

3 CALL "ORBSRVR" USING SERVER-NAME
SERVER-NAME-LEN.

SET WS-ORBSRVR TO TRUE.
PERFORM CHECK-STATUS.

**
* Interface Section Block
**

Example 5: The IMS SIMPLESV Demonstration (Sheet 2 of 3)
69

CHAPTER 3 |
Explanation of the IMS SIMPLESV
program

The SIMPLESV program can be explained as follows:

1. ORBSTAT is called to register the ORBIX-STATUS-INFORMATION block that
is contained in the CORBA copybook. Registering the
ORBIX-STATUS-INFORMATION block allows the COBOL runtime to
populate it with exception information, if necessary.

2. ORBARGS is called to initialize a connection to the ORB.

3. ORBSRVR is called to set the server name.

* Generating Object Reference for interface Simple/SimpleObject

4 CALL "ORBREG" USING SIMPLE-SIMPLEOBJECT-INTERFACE.
SET WS-ORBREG TO TRUE.
PERFORM CHECK-STATUS.

5 CALL "OBJNEW" USING SERVER-NAME
INTERFACE-NAME OF INTERFACE-NAMES-ARRAY(1)

OBJECT-IDENTIFIER OF OBJECT-ID-ARRAY(1)
SIMPLE-SIMPLEOBJECT-OBJ.

SET WS-OBJNEW TO TRUE.
PERFORM CHECK-STATUS.

6 CALL "COARUN".
SET WS-COARUN TO TRUE.
PERFORM CHECK-STATUS.

EXIT-PRG.
GOBACK.

**
* Populate the working storage PCB definitions
**
COPY UPDTPCBS.

**
* Check Errors Copybook
**
COPY CERRSMFA.

Example 5: The IMS SIMPLESV Demonstration (Sheet 3 of 3)
 70

4. ORBREG is called to register the IDL interface, SimpleObject, with the
Orbix COBOL runtime.

5. OBJNEW is called to create a persistent server object of the
SimpleObject type, with an object ID of my_simple_object.

6. COARUN is called, to enter the ORB::run loop, to allow the ORB to
receive and process client requests. This then processes the CORBA
request that the IMS adapter sends to IMS. If the transaction has been
defined as WFI, multiple requests can be processed in the COARUN loop;
otherwise, COARUN processes only one request.

Location of the IMS SIMPLESV
program

You can find a complete version of the IMS SIMPLESV server mainline
program in orbixhlq.DEMOS.IMS.COBOL.SRC(SIMPLESV) after you have run
the supplied SIMPLIDL JCL to run the Orbix E2A IDL compiler.
71

CHAPTER 3 |
Building the Server

Location of the JCL Sample JCL used to compile and link the IMS server mainline and server
implementation is in orbixhlq.DEMOS.IMS.COBOL.BUILD.JCL(SIMPLESB).

Resulting load module When this JCL has successfully executed, it results in a load module that is
contained in orbixhlq.DEMOS.IMS.COBOL.LOAD(SIMPLESV).
 72

Preparing the Server to Run in IMS

Overview This section describes the required steps to allow the server to run in an IMS
MPP region. When all the steps in this section have been completed, the
server is started automatically within IMS, as required.

Steps The following steps are required to enable an IMS server to run in an IMS
MPP region:

Step 1óDefining transaction
definition for IMS

A transaction definition must be created for the server, to allow it to run in
IMS. The following is the transaction definition for the supplied
demonstration:

Step 2óProviding load module to
IMS region

Ensure that the orbixhlq.DEMOS.IMS.COBOL.LOAD PDS is added to the
STEPLIB for the IMS region that is to run the transaction, or copy the
SIMPLESV load module to a PDS in the STEPLIB of the relevant IMS region.

Step Action

1 Define a transaction definition for IMS.

2 Provide the IMS server load module to an IMS MPP region.

3 Generate mapping file entries for the IMS adapter.

4 Add the IDL to the Interface Repository.

5 Obtain the IOR for use by the client program.

APPLCTN GPSB=SIMPLESV, x
PGMTYPE=(TP,,2), x
SCHDTYP=PARALLEL

TRANSACT CODE=SIMPLESV, x
EDIT=(ULC)
73

CHAPTER 3 |
Step 3óGenerating mapping file
entries

The IMS adapter requires mapping file entries, so that it knows which IMS
transaction should be run for a particular interface and operation. The
mapping file entry for the supplied example is contained in
orbixhlq.DEMOS.IMS.MFAMAP(SIMPLEA) (after you run the IDL compiler) and
appears as follows:

Adapter mapping file generation is performed as part of the supplied
orbixhlq.DEMOS.IMS.COBOL.BUILD.JCL(SIMPLIDL) JCL. The -mfa:
-ttransaction_name argument with the IDL compiler generates the
mapping file. For the purposes of this example, transaction_name is
replaced with SIMPLESV. An IDLMFA DD statement must also be provided in
the JCL, to specify the PDS into which the mapping file is generated. See
the IMS Adapter Administratorís Guide for full details about adapter
mapping files.

Step 4óAdding IDL to interface
repository

The IMS adapter needs to be able to obtain the IDL for the COBOL server
from the Interface Repository, so that it knows what data types it has to
marshal into IMS for the server, and what data types it should expect back
from the IMS transaction. Ensure that the relevant IDL for the server has
been added to the Interface Repository before the IMS adapter is started.

To add IDL to the Interface Repository, the Interface Repository must be
running. You can use the JCL in orbixhlq.JCL(IFR) to start it. The Interface
Repository uses the Orbix E2A configuration member for its settings. The
JCL that you use to start the Interface Repository uses a configuration
member that is provided in orbixhlq.DOMAINS(FILEDOMA).

The following JCL that adds IDL to the Interface Repository is supplied in
orbixhlq.DEMOS.IMS.COBOL.BUILD.JCL(SIMPLEREG).

(Simple/SimpleObject,call_me,SIMPLESV)

// JCLLIB ORDER=(HLQ.ASP50.PROCS)
// INCLUDE MEMBER=(ORXVARS)
//IDLCBL EXEC ORXIDL,
// SOURCE=SIMPLE,
// IDL=&ORBIX..DEMOS.IDL,
// COPYLIB=&ORBIX..DEMOS.IMS.COBOL.COPYLIB,
// IMPL=&ORBIX..DEMOS.IMS.COBOL.SRC,
// IDLPARM=’-R’
 74

Step 5óObtaining the adapter
IOR

The final step is to use the resolve command, to obtain the IOR that the
client needs to locate the IMS adapter. To obtain the IMS adapter�s IOR, the
following prerequisites apply:

ï The Interface Repository must be running and contain the relevant IDL.
See �Step 4�Adding IDL to interface repository� on page 74 for details
of how to start it, if it is not already running.

ï The IMS adapter must be running. See the IMS Adapter
Administratorís Guide for more details about it and how to start it.

ï The IMS adapter mapping file must contain the relevant mapping
entries. For the purposes of this example, ensure that the
orbixhlq.DEMOS.IMS.MFAMAP(SIMPLEA) mapping member is being
used. See the IMS Adapter Administratorís Guide for details about
adapter mapping files.

The following JCL, which includes the resolve command to obtain the IOR,
is supplied in orbixhlq.DEMOS.IMS.COBOL.BUILD.JCL(SIMPLIOR).

// JCLLIB ORDER=(HLQ.ASP50.PROCS)
// INCLUDE MEMBER=(ORXVARS)
//REG EXEC PROC=ORXADMIN,
// PPARM=’mfa resolve Simple/SimpleObject > DD:IOR’
//IOR DD DSN=&ORBIX..DEMOS.IORS(SIMPLE),DISP=SHR
75

CHAPTER 3 |
Developing and Running the Client

Overview This section describes the steps you must follow to develop, and
subsequently run, the client executable for your application.

Steps to develop the client The steps to develop and run the client application are:

Note: The Orbix E2A IDL compiler does not generate COBOL client stub
code.

Step Action

1 �Writing the Client� on page 77.

2 �Building and Running the Client� on page 82.
 76

77

CHAPTER 3 |
01 ORB-NAME PICTURE X(10)
VALUE "simple_orb".

01 ORB-NAME-LEN PICTURE 9(09) BINARY
VALUE 10.

01 IOR-REC-PTR POINTER
VALUE NULL.

01 IOR-REC-LEN PICTURE 9(09) BINARY
VALUE 2048.

COPY PROCPARM.
1 CALL "ORBSTAT" USING ORBIX-STATUS-INFORMATION.

* ORB initialization
DISPLAY "Initializing the ORB".

2 CALL "ORBARGS" USING ARG-LIST
ARG-LIST-LEN
ORB-NAME
ORB-NAME-LEN.

SET WS-ORBARGS TO TRUE.
PERFORM CHECK-STATUS.

* Register interface TypeTest
DISPLAY "Registering the Interface".

3 CALL "ORBREG" USING SIMPLE-SIMPLEOBJECT-INTERFACE.
SET WS-ORBREG TO TRUE.
PERFORM CHECK-STATUS.

*
4 ** Read in the IOR from a file which has been populated

** by the server program.
*

OPEN INPUT SIMPLE-SIMPLEOBJECT-IOR.
COPY CHKFILE REPLACING

"X-IOR-STAT" BY SIMPLE-SIMPLEOBJECT-IOR-STAT.

DISPLAY "Reading object reference from file".
READ SIMPLE-SIMPLEOBJECT-IOR.
COPY CHKFILE REPLACING

"X-IOR-STAT" BY SIMPLE-SIMPLEOBJECT-IOR-STAT.

MOVE SIMPLE-SIMPLEOBJECT-REC TO WS-SIMPLE-IOR.

* IOR Record read successfully
CLOSE SIMPLE-SIMPLEOBJECT-IOR.
COPY CHKFILE REPLACING

Example 6: The SIMPLECL Demonstration Program (Sheet 2 of 3)
 78

"X-IOR-STAT" BY SIMPLE-SIMPLEOBJECT-IOR-STAT.
* Set the COBOL pointer to point to the IOR string

5 CALL "STRSET" USING IOR-REC-PTR
IOR-REC-LEN
WS-SIMPLE-IOR.

SET WS-STRSET TO TRUE.
PERFORM CHECK-STATUS.

* Obtain object reference from the IOR
6 CALL "STRTOOBJ" USING IOR-REC-PTR

SIMPLE-SIMPLEOBJECT-OBJ

SET WS-STRTOOBJ TO TRUE.
PERFORM CHECK-STATUS.

* Releasing the memory
CALL "STRFREE" USING IOR-REC-PTR.
SET WS-STRFREE TO TRUE.
PERFORM CHECK-STATUS.

SET SIMPLE-SIMPLEOBJECT-CALL-ME TO TRUE
DISPLAY "invoking Simple::" SIMPLE-SIMPLEOBJECT-OPERATION.

7 CALL "ORBEXEC" USING SIMPLE-SIMPLEOBJECT-OBJ
SIMPLE-SIMPLEOBJECT-OPERATION
SIMPLE-SIMPLEOBJECT-70FE-ARGS
SIMPLE-USER-EXCEPTIONS.

SET WS-ORBEXEC TO TRUE.
PERFORM CHECK-STATUS.

CALL "OBJREL" USING SIMPLE-SIMPLEOBJECT-OBJ.
SET WS-OBJREL TO TRUE.
PERFORM CHECK-STATUS.

DISPLAY "Simple demo complete.".

EXIT-PRG.
*========.
STOP RUN.

**
* Check Errors Copybook
**

COPY CHKERRS.

Example 6: The SIMPLECL Demonstration Program (Sheet 3 of 3)
79

CHAPTER 3 |
Explanation of the SIMPLECL
program

The SIMPLECL program can be explained as follows:

1. ORBSTAT is called to register the ORBIX-STATUS-INFORMATION block that
is contained in the CORBA copybook. Registering the
ORBIX-STATUS-INFORMATION block allows the COBOL runtime to
populate it with exception information, if necessary.

You can use the ORBIX-STATUS-INFORMATION data item (in the CORBA
copybook) to check the status of any Orbix call. The EXCEPTION-NUMBER
numeric data item is important in this case. If this item is 0, it means
the call was successful. Otherwise, EXCEPTION-NUMBER holds the
system exception number that occurred. You should test this data item
after any Orbix call.

2. ORBARGS is called to initialize a connection to the ORB.

3. ORBREG is called to register the IDL interface with the Orbix COBOL
runtime.

4. The client reads the stringified object reference for the object from the
PDS member that has been populated by the server. For the purposes
of this example, the IOR member is contained in
orbixhlq.DEMOS.IORS(SIMPLE).

5. STRSET is called to create an unbounded string to which the stringified
object reference is copied.

6. STRTOOBJ is called to create an object reference to the server object
that is represented by the IOR. This must be done to allow operation
invocations on the server. The STRTOOBJ call takes an interoperable
stringified object reference and produces an object reference pointer.
This pointer is used in all method invocations. See the CORBA
Programmerís Reference, C++ for more details about stringified
object references

7. After the object reference is created, ORBEXEC is called to invoke
operations on the server object represented by that object reference.
You must pass the object reference, the operation name, the argument
description packet, and the user exception buffer. The operation name
must have at least one trailing space. The generated operation
condition names found in the SIMPLE copybook already handle this.
 80

The same argument description is used by the server, and is found in
the SIMPLE copybook. For example, see
orbixhlq.DEMOS.COBOL.COPYLIB(SIMPLE).

Location of the SIMPLECL
program

You can find a complete version of the SIMPLECL client program in
orbixhlq.DEMOS.COBOL.SRC(SIMPLECL).
81

CHAPTER 3 |
Building and Running the Client

JCL to build the client Sample JCL used to compile and link the client can be found in the third
step of orbixhlq.DEMOS.COBOL.BUILD.JCL(SIMPLECB).

Resulting load module When the JCL has successfully executed, it results in a load module that is
contained in orbixhlq.DEMOS.COBOL.LOAD(SIMPLECL).

JCL to run the client Provided the IMS adapter has been started, you can use the following JCL to
run the supplied SIMPLECL client application:

Client output The following is an example of the output produced by the batch client for
the supplied demonstration:

orbixhlq.DEMOS.COBOL.RUN.JCL(SIMPLECL)

Note: See the IMS Adapter Administratorís Guide for details of how to
start the IMS adapter.

Initializing the ORB
Registering the Interface
Reading object reference from file
invoking Simple::call_me
Simple demo complete.
 82

CHAPTER 4

Getting Started in
CICS
This chapter introduces CICS application programming with
Orbix E2A, by showing how to use Orbix E2A to develop a
simple distributed application that features a COBOL client
running in batch and a COBOL server running in CICS.

In this chapter This chapter discusses the following topics:

Overview and Setup Requirements page 84

Developing the Application Interfaces page 89

Developing the Server page 95

Developing and Running the Client page 109

Note: The example provided in this chapter requires use of the CICS
adapter, which is supplied as part of the Orbix E2A Application Server
Platform Mainframe Edition. See the CICS Adapter Administratorís Guide
for more details about the CICS adapter.
83

CHAPTER 4 |
Overview and Setup Requirements

Introduction This section provides an overview of the main steps involved in creating an
Orbix E2A COBOL application. It describes important steps that you must
perform before you begin. It also introduces the supplied SIMPLE
demonstration, and outlines where you can find the various source code and
JCL elements for it.

Steps to create an application The main steps to create an Orbix E2A COBOL application are:

This chapter describes in detail how to perform each of these steps.

The Simple demonstration This chapter describes how to develop a simple client-server application
that consists of:

ï An Orbix E2A COBOL server that implements a simple persistent
POA-based server.

ï An Orbix E2A COBOL client that uses the clearly defined object
interface, SimpleObject, to communicate with the server.

The client and server use the Internet Inter-ORB Protocol (IIOP), which runs
over TCP/IP, to communicate. As already stated, the SIMPLE demonstration
is not meant to reflect a real-world scenario requiring the Orbix E2A
Application Server Platform Mainframe Edition, because the client and
server are written in the same language and running on the same platform.

Step Action

1 �Developing the Application Interfaces� on page 89.

2 �Developing the Server� on page 95.

3 �Developing and Running the Client� on page 109.
 84

The demonstration server The server runs in a CICS region. It accepts and processes requests from the
client across the network, and communicates with the client via the CICS
adapter.

See �Location of supplied code and JCL� on page 85 for details of where
you can find an example of the supplied server. See �Developing the Server�
on page 95 for more details of how to develop the server.

The demonstration client The client runs as a batch job. It accesses and requests data from the
server. When the client invokes a remote operation, a request message is
sent from the client to the server via the CICS adapter. When the operation
has completed, a reply message is sent back to the client via the CICS
adapter. This completes a single remote CORBA invocation.

See �Location of supplied code and JCL� on page 85 for details of where
you can find an example of the supplied client. See �Developing and
Running the Client� on page 109 for more details of how to develop the
client.

Location of supplied code and JCL All the source code and JCL components needed to create and run the CICS
SIMPLE demonstration have been provided with your installation. Apart from
site-specific changes to some JCL, these do not require editing.

Table 10 provides a summary of the code elements and JCL components
that are relevant to the CICS SIMPLE demonstration (where orbixhlq
represents your installation�s high-level qualifier).

Table 10: Supplied Code and JCL (Sheet 1 of 2)

Location Description

orbixhlq.DEMOS.IDL(SIMPLE) This is the supplied IDL.

orbixhlq.DEMOS.CICS.COBOL.SRC(SIMPLESV) This is the source code for the CICS server mainline
program, which is generated when you run the JCL in
orbixhlq.DEMOS.CICS.COBOL.BUILD.JCL(SIMPLIDL).
(The CICS server mainline code is not shipped with
the product. You must run the SIMPLIDL JCL to
generate it.)

orbixhlq.DEMOS.CICS.COBOL.SRC(SIMPLES) This is the source code for the CICS server
implementation program.
85

CHAPTER 4 |
orbixhlq.DEMOS.COBOL.SRC(SIMPLECL) This is the source code for the batch client program.

orbixhlq.DEMOS.CICS.COBOL.BUILD.JCL(SIMPLIDL) This JCL runs the Orbix E2A IDL compiler, to
generate COBOL source and copybooks for the CICS
server. This JCL specifies the -S and -TCICS compiler
arguments, to generate CICS server mainline code. It
does not specify the -Z argument, which generates
server implementation code.

This JCL also specifies the -mfa and
-ttran_or_program_name arguments, to generate the
adapter mapping file, which is then written to
orbixhlq.DEMOS.CICS.MFAMAP(SIMPLEA). The
contents of the SIMPLEA member are
(Simple/SimpleObject,call_me,SIMPLESV) (that is,
fully qualifed interface name followed by operation
name followed by CICS APPC transaction name or
CICS EXCI program name). See the CICS Adapter
Administratorís Guide for more details about
generating adapter mapping files.

orbixhlq.DEMOS.COBOL.BUILD.JCL(SIMPLECB) This JCL compiles the client program.

orbixhlq.DEMOS.CICS.COBOL.BUILD.JCL(SIMPLESB) This JCL compiles and links the CICS server mainline
and CICS server implementation programs.

orbixhlq.DEMOS.CICS.COBOL.BUILD.JCL(SIMPLREG) This JCL registers the IDL in the Interface Repository.

orbixhlq.DEMOS.CICS.COBOL.BUILD.JCL(SIMPLIOR) This JCL obtains the IOR that the client of the CICS
server requires to locate the CICS adapter.

orbixhlq.DEMOS.COBOL.RUN.JCL(SIMPLECL) This JCL runs the batch client.

Note: Other code elements and JCL components are provided for the
batch and IMS versions of the SIMPLE demonstration. See �Getting Started
in Batch� on page 13 and �Getting Started in IMS� on page 49 for more
details of these.

Table 10: Supplied Code and JCL (Sheet 2 of 2)

Location Description
 86

Supplied copybooks Table 11 provides a summary of the various copybooks supplied with your
product installation that are relevant to CICS. In Table 11, servers means
CICS servers, and clients means batch clients. Again, orbixhlq represents
your installation�s high-level qualifier.

Table 11: Supplied Copybooks (Sheet 1 of 2)

Location Description

orbixhlq.INCLUDE.COPYLIB(CHKERRS) This is used by clients. It is not used by CICS servers.
It contains a COBOL function that can be called by
the batch client, to check if an exception has
occurred and report it.

orbixhlq.INCLUDE.COPYLIB(CERRSMFA) This is used by servers. It contains a COBOL function
that can be called by the CICS server, to check if an
exception has occurred and report it.

orbixhlq.INCLUDE.COPYLIB(CORBA) This is used both by clients and servers. It contains
various Orbix E2A COBOL definitions, such as
REQUEST-INFO used by the COAREQ function, and
ORBIX-STATUS-INFORMATION which is used to register
and report exceptions raised by the COBOL runtime.

orbixhlq.INCLUDE.COPYLIB(CORBATYP) This is used both by clients and servers. It contains
the COBOL typecode representation for IDL basic
types.

orbixhlq.INCLUDE.COPYLIB(IORSLCT) This is used by clients. It is not used by CICS servers.
It contains the COBOL SELECT statement entry for file
processing, for use with the COPY…REPLACING
statement.

orbixhlq.INCLUDE.COPYLIB(IORFD) This is used by clients. It is not used by CICS servers.
It contains the COBOL FD statement entry for file
processing, for use with the COPY…REPLACING
statement.

orbixhlq.INCLUDE.COPYLIB(CHKFILE) This is used by clients. It is not used by CICS servers.
It is used for file handling error checking.
87

CHAPTER 4 |
Checking JCL components When creating the SIMPLE application, check that each step involved within
the separate JCL components completes with a condition code of zero. If the
condition codes are not zero, establish the point and cause of failure. The
most likely cause is the site-specific JCL changes required for the compilers.
Ensure that each high-level qualifier throughout the JCL reflects your
installation.

orbixhlq.INCLUDE.COPYLIB(PROCPARM) This is used by clients. It is not used by CICS servers.
It contains the appropriate definitions for a COBOL
program to accept parameters from the JCL for use
with the ORBARGS API (that is, the argument-string
parameter).

orbixhlq.DEMOS.CICS.COBOL.COPYLIB This PDS is used to store all CICS copybooks that are
generated by the Orbix E2A IDL compiler when you
run the supplied SIMPLIDL JCL for the CICS
demonstration. It also contains copybooks with
Working Storage data definitions and Procedure
Division paragraphs for use with the nested
sequences demonstration.

orbixhlq.DEMOS.CICS.MFAMAP This PDS is empty at installation time. It is used to
store the CICS adapter mapping member generated
by the Orbix E2A IDL compiler when you run the
supplied SIMPLIDL JCL.

Note: Some other copybooks are provided specifically for use with IMS.
See �Getting Started in IMS� on page 49 for more details of these.

Table 11: Supplied Copybooks (Sheet 2 of 2)

Location Description
 88

Developing the Application Interfaces

Overview This section describes the steps you must follow to develop the IDL
interfaces for your application. It first describes how to define the IDL
interfaces for the objects in your system. It then describes how to generate
COBOL source and copybooks from IDL interfaces, and provides a
description of the members generated from the supplied SimpleObject
interface.

Steps to develop application
interfaces

The steps to develop the interfaces to your application are:

Step Action

1 Define public IDL interfaces to the objects required in your
system.

See �Defining IDL Interfaces� on page 90.

2 Use the Orbix E2A IDL compiler to generate COBOL source
code and copybooks from the defined IDL.

See �Generating COBOL Source and Copybooks� on page 91.
89

CHAPTER 4 |
Defining IDL Interfaces

Defining the IDL The first step in writing an Orbix E2A program is to define the IDL interfaces
for the objects required in your system. The following is an example of the
IDL for the SimpleObject interface that is supplied in
orbixhlq.DEMOS.IDL(SIMPLE):

Explanation of the IDL The preceding IDL declares a SimpleObject interface that is scoped (that is,
contained) within the Simple module. This interface exposes a single
call_me() operation. This IDL definition provides a language-neutral
interface to the CORBA Simple::SimpleObject type.

How the demonstration uses this
IDL

For the purposes of this example, the SimpleObject CORBA object is
implemented in COBOL in the supplied SIMPLES server application. The
server application creates a persistent server object of the SimpleObject
type, and publishes its object reference to a PDS member. The client
application must then locate the SimpleObject object by reading the
interoperable object reference (IOR) from the relevant PDS member. The
client invokes the call_me() operation on the SimpleObject object, and
then exits.

// IDL
module Simple
{

interface SimpleObject
{

void
call_me();

};
};
 90

Generating COBOL Source and Copybooks

The Orbix E2A IDL compiler You can use the Orbix E2A IDL compiler to generate COBOL source and
copybooks from IDL definitions.

Orbix E2A IDL compiler
configuration

The Orbix E2A IDL compiler uses the Orbix E2A configuration member for
its settings. The SIMPLIDL JCL that runs the compiler uses a configuration
member provided in orbixhlq.CONFIG(IDL). See �Orbix E2A IDL Compiler�
on page 237 for more details.

Running the Orbix E2A IDL
compiler

The COBOL source for the CICS server demonstration described in this
chapter is generated in the first step of the following job:

orbixhlq.DEMOS.CICS.COBOL.BUILD.JCL(SIMPLIDL)
91

CHAPTER 4 |
Generated source code members Table 12 shows the server source code members that the Orbix E2A IDL
compiler generates, based on the defined IDL.

Table 12: Generated Server Source Code Members

Member JCL Keyword
Parameter

Description

idlmembernameS IMPL This is the CICS server
implementation source code
member. It contains stub
paragraphs for all the callable
operations.

This is only generated if you
specify both the -Z and -TCICS
arguments with the IDL compiler.

idlmembernameSV IMPL This is the CICS server mainline
source code member.

This is only generated if you
specify both the -S and -TCICS
arguments with the IDL compiler.

Note: For the purposes of this example, the SIMPLES server
implementation is already provided in your product installation. Therefore,
the -Z IDL compiler argument used to generate it is not specified in the
supplied SIMPLIDL JCL. The SIMPLESV server mainline is not already
provided, so the -S argument used to generate it is specified in the
supplied JCL. See �Orbix E2A IDL Compiler� on page 237 for more details
of the -S, -Z, and -TCICS arguments used to generate CICS server code.
 92

Generated COBOL copybooks Table 13 shows the COBOL copybooks that the Orbix E2A IDL compiler
generates, based on the defined IDL.

How IDL maps to COBOL
copybooks

Each IDL interface maps to a group of COBOL data definitions. There is one
definition for each IDL operation. A definition contains each of the
parameters for the relevant IDL operation in their corresponding COBOL
representation. See �IDL-to-COBOL Mapping� on page 161 for details of
how IDL types map to COBOL.

Table 13: Generated COBOL Copybooks

Copybook JCL Keyword
Parameter

Description

idlmembername COPYLIB This copybook contains data
definitions that are used for
working with operation
parameters and return values for
each interface defined in the IDL
member.

The name for this copybook does
not take a suffix.

idlmembernameX COPYLIB This copybook contains data
definitions that are used by the
COBOL runtime to support the
interfaces defined in the IDL
member.

This copybook is automatically
included in the idlmembername
copybook.

idlmembernameD COPYLIB This copybook contains
procedural code for performing
the correct paragraph for the
requested operation.

This copybook is automatically
included in the idlmembernameS
source code member.
93

CHAPTER 4 |
Attributes map to two operations (get and set), and readonly attributes map
to a single get operation.

Generated adapter mapping
member
 94

Developing the Server

Overview This section describes the steps you must follow to develop the CICS server
executable for your application.

Steps to develop the server The steps to develop the server application are:

Step Action

1 �Writing the Server Implementation� on page 96.

2 �Writing the Server Mainline� on page 100.

3 �Building the Server� on page 104.

4 �Preparing the Server to Run in CICS� on page 105.
95

CHAPTER 4 |
Writing the Server Implementation

The server implementation
program

You must implement the server interface by writing a COBOL program that
implements each operation in the idlmembername copybook. For the
purposes of this example, you must write a COBOL program that
implements each operation in the SIMPLE copybook. When you specify the
-Z and -TCICS arguments with the Orbix E2A IDL compiler in this case, it
generates a skeleton program called SIMPLES, which is a useful starting
point.

Example of the CICS SIMPLES
program

The following is an example of the CICS SIMPLES program:

Example 7: The CICS SIMPLES Demonstration (Sheet 1 of 2)

**
* Identification Division
**
IDENTIFICATION DIVISION.
PROGRAM-ID. SIMPLES.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
COPY SIMPLE.
COPY CORBA.

01 WS-INTERFACE-NAME PICTURE X(30).
01 WS-INTERFACE-NAME-LENGTH PICTURE 9(09) BINARY

VALUE 30.

**
* Procedure Division
**
PROCEDURE DIVISION.

1 ENTRY "DISPATCH".

2 CALL "COAREQ" USING REQUEST-INFO.
SET WS-COAREQ TO TRUE.
PERFORM CHECK-STATUS.
 96

3 * Resolve the pointer reference to the interface name which is
* the fully scoped interface name
* Note make sure it can handle the max interface name length

CALL "STRGET" USING INTERFACE-NAME
WS-INTERFACE-NAME-LENGTH
WS-INTERFACE-NAME.

SET WS-STRGET TO TRUE.
PERFORM CHECK-STATUS.

**
* Interface(s) evaluation:
**

MOVE SPACES TO SIMPLE-SIMPLEOBJECT-OPERATION.

EVALUATE WS-INTERFACE-NAME
WHEN 'IDL:Simple/SimpleObject:1.0'

4 * Resolve the pointer reference to the operation information
CALL "STRGET" USING OPERATION-NAME

SIMPLE-S-3497-OPERATION-LENGTH
SIMPLE-SIMPLEOBJECT-OPERATION

SET WS-STRGET TO TRUE
PERFORM CHECK-STATUS
DISPLAY "Simple::" SIMPLE-SIMPLEOBJECT-OPERATION

"invoked"
END-EVALUATE.

5 COPY SIMPLED.

GOBACK.

6 DO-SIMPLE-SIMPLEOBJECT-CALL-ME.
CALL "COAGET" USING SIMPLE-SIMPLEOBJECT-70FE-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

CALL "COAPUT" USING SIMPLE-SIMPLEOBJECT-70FE-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

**
* Check Errors Copybook
**

7 COPY CERRSMFA.

Example 7: The CICS SIMPLES Demonstration (Sheet 2 of 2)
97

CHAPTER 4 |
Explanation of the CICS SIMPLES
program

The SIMPLES program can be explained as follows:

1. The DISPATCH logic is automatically coded for you, and the bulk of the
code is contained in the SIMPLED copybook. When an incoming request
arrives from the network, it is processed by the ORB and a call is made
to the DISPATCH entry point.

2. COAREQ is called to provide information about the current invocation
request, which is held in the REQUEST-INFO block that is contained in
the CORBA copybook.

COAREQ is called once for each operation invocation�after a request
has been dispatched to the server, but before any calls are made to
access the parameter values.

3. STRGET is called to copy the characters in the unbounded string pointer
for the interface name to the string item representing the fully scoped
interface name.

4. STRGET is called again to copy the characters in the unbounded string
pointer for the operation name to the string item representing the
operation name.

5. The procedural code used to perform the correct paragraph for the
requested operation is copied into the program from the SIMPLED
copybook.

6. Each operation has skeleton code, with appropriate calls to COAPUT and
COAGET to copy values to and from the COBOL structures for that
operation�s argument list. You must provide a correct implementation
for each operation. You must call COAGET and COAPUT, even if your
operation takes no parameters and returns no data. You can simply
pass in a dummy area as the parameter list.

7. The CICS server implementation uses a COPY CERRSMFA statement
instead of COPY CHKERRS.

Note: The supplied SIMPLES program is only a suggested way of
implementing an interface. It is not necessary to have all operations
implemented in the same COBOL program.
 98

Location of the CICS SIMPLES
program

You can find a complete version of the CICS SIMPLES server implementation
program in
99

CHAPTER 4 |
Writing the Server Mainline

The server mainline program The next step is to write the server mainline program in which to run the
server implementation. For the purposes of this example, when you specify
the -S and -TCICS arguments with the Orbix E2A IDL compiler, it generates
a program called SIMPLESV, which contains the server mainline code.

Example of the CICS SIMPLESV
program

The following is an example of the CICS SIMPLESV program:

Note: Unlike the batch server mainline, the CICS server mainline does
not have to create and store stringified object references (IORs) for the
interfaces that it implements, because this is handled by the CICS adapter.

Example 8: The CICS SIMPLESV Demonstration (Sheet 1 of 3)

IDENTIFICATION DIVISION.
PROGRAM-ID. SIMPLESV.
ENVIRONMENT DIVISION.
DATA DIVISION.

WORKING-STORAGE SECTION.

COPY SIMPLE.
COPY CORBA.

01 ARG-LIST PICTURE X(01)
VALUE SPACES.

01 ARG-LIST-LEN PICTURE 9(09) BINARY
VALUE 0.

01 ORB-NAME PICTURE X(10)
VALUE "simple_orb".

01 ORB-NAME-LEN PICTURE 9(09) BINARY
VALUE 10.

01 SERVER-NAME PICTURE X(07)
VALUE "simple ".

01 SERVER-NAME-LEN PICTURE 9(09) BINARY
VALUE 6.

01 INTERFACE-LIST.
 100

03 FILLER PICTURE X(28)
VALUE "IDL:Simple/SimpleObject:1.0 ".

01 INTERFACE-NAMES-ARRAY REDEFINES INTERFACE-LIST.
03 INTERFACE-NAME OCCURS 1 TIMES PICTURE X(28).

01 OBJECT-ID-LIST.
03 FILLER PICTURE X(27)

VALUE "Simple/SimpleObject_object ".
01 OBJECT-ID-ARRAY REDEFINES OBJECT-ID-LIST.

03 OBJECT-IDENTIFIER OCCURS 1 TIMES PICTURE X(27).

**
* Object values for the Interface(s)
**
01 SIMPLE-SIMPLEOBJECT-OBJ POINTER

VALUE NULL.

PROCEDURE DIVISION.

INIT.

1 CALL "ORBSTAT" USING ORBIX-STATUS-INFORMATION.
SET WS-ORBSTAT TO TRUE.
PERFORM CHECK-STATUS.

2 CALL "ORBARGS" USING ARG-LIST
ARG-LIST-LEN
ORB-NAME
ORB-NAME-LEN.

SET WS-ORBARGS TO TRUE.
PERFORM CHECK-STATUS.

3 CALL "ORBSRVR" USING SERVER-NAME
SERVER-NAME-LEN.

SET WS-ORBSRVR TO TRUE.
PERFORM CHECK-STATUS.

**
* Interface Section Block
**

* Generating Object Reference for interface Simple/SimpleObject

4 CALL "ORBREG" USING SIMPLE-SIMPLEOBJECT-INTERFACE.

Example 8: The CICS SIMPLESV Demonstration (Sheet 2 of 3)
101

CHAPTER 4 |
Explanation of the CICS
SIMPLESV program

The SIMPLESV program can be explained as follows:

1. ORBSTAT is called to register the ORBIX-STATUS-INFORMATION block that
is contained in the CORBA copybook. Registering the
ORBIX-STATUS-INFORMATION block allows the COBOL runtime to
populate it with exception information, if necessary.

2. ORBARGS is called to initialize a connection to the ORB.

3. ORBSRVR is called to set the server name.

4. ORBREG is called to register the IDL interface, SimpleObject, with the
Orbix COBOL runtime.

5. OBJNEW is called to create a persistent server object of the
SimpleObject type, with an object ID of my_simple_object.

6. COARUN is called, to enter the ORB::run loop, to allow the ORB to
receive and process client requests. This then processes the CORBA
request that the CICS adapter sends to CICS.

SET WS-ORBREG TO TRUE.
PERFORM CHECK-STATUS.

5 CALL "OBJNEW" USING SERVER-NAME
INTERFACE-NAME OF INTERFACE-NAMES-ARRAY(1)

OBJECT-IDENTIFIER OF OBJECT-ID-ARRAY(1)
SIMPLE-SIMPLEOBJECT-OBJ.

SET WS-OBJNEW TO TRUE.
PERFORM CHECK-STATUS.

6 CALL "COARUN".
SET WS-COARUN TO TRUE.
PERFORM CHECK-STATUS.

EXIT-PRG.
GOBACK.

**
* Check Errors Copybook
**
COPY CERRSMFA.

Example 8: The CICS SIMPLESV Demonstration (Sheet 3 of 3)
 102

Location of the CICS SIMPLESV
program

You can find a complete version of the CICS SIMPLESV server mainline
program in orbixhlq.DEMOS.CICS.COBOL.SRC(SIMPLESV) after you have run
the supplied SIMPLIDL JCL to run the Orbix E2A IDL compiler.
103

CHAPTER 4 |
Building the Server

Location of the JCL Sample JCL used to compile and link the CICS server mainline and server
implementation is in orbixhlq.DEMOS.CICS.COBOL.BUILD.JCL(SIMPLESB).

Resulting load module When this JCL has successfully executed, it results in a load module that is
contained in orbixhlq.DEMOS.CICS.COBOL.LOAD(SIMPLESV).
 104

Preparing the Server to Run in CICS

Overview This section describes the required steps to allow the server to run in a CICS
MPP region. When all the steps in this section have been completed, the
server is started automatically within CICS, as required.

Steps The steps to enable the server to run in a CICS region are:

Step 1óDefining program or
transaction definition for CICS

A CICS APPC transaction definition, or CICS EXCI program definition, must
be created for the server, to allow it to run in CICS. The following is the CICS
APPC transaction definition for the supplied demonstration:

Step Action

1 Define an APPC transaction definition or EXCI program
definition for CICS.

2 Provide the CICS server load module to a CICS region.

3 Generate mapping file entries for the CICS adapter.

4 Add the IDL to the Interface Repository.

5 Obtain the IOR for use by the client program.

DEFINE TRANSACTION(SMSV)
GROUP(ORXAPPC)
DESCRIPTION(Orbix APPC Simple demo transaction)
PROGRAM(SIMPLESV)
PROFILE(DFHCICSA)
TRANCLASS(DFHTCL00)
DTIMOUT(10)
SPURGE(YES)
TPURGE(YES)
RESSEC(YES)
105

CHAPTER 4 |
The following is the CICS EXCI program definition for the supplied
demonstration:

See the supplied orbixhlq.JCL.(ORBIXCSD) for a more detailed example of
how to define the resources that are required to use Orbix with CICS and to
run the supplied demonstrations.

Step 2óProviding load module to
CICS region

Ensure that the orbixhlq.DEMOS.CICS.COBOL.LOAD PDS is added to the
DFHRPL for the CICS region that is to run the transaction, or copy the
SIMPLESV load module to a PDS in the DFHRPL of the relevant CICS region.

Step 3óGenerating mapping file
entries

The CICS adapter requires mapping file entries, so that it knows which CICS
APPC transaction or CICS EXCI program should be run for a particular
interface and operation. The mapping file entry for the supplied example is
contained in orbixhlq.DEMOS.CICS.MFAMAP(SIMPLEA) (after you run the IDL
compiler) and appears as follows:

Adapter mapping file generation is performed as part of the supplied
orbixhlq.DEMOS.CICS.COBOL.BUILD.JCL(SIMPLIDL) JCL. The -mfa:
-ttran_or_program_name argument with the IDL compiler generates the
mapping file. For the purposes of this example, tran_or_program_name is
replaced with SIMPLESV. An IDLMFA DD statement must also be provided in
the JCL, to specify the PDS into which the mapping file is generated. See
the CICS Adapter Administratorís Guide for full details about adapter
mapping files.

DEFINE PROGRAM(SIMPLESV)
GROUP(ORXDEMO)
DESCRIPTION(Orbix Simple demo server)
LANGUAGE(LE370)
DATALOCATION(ANY)
EXECUTIONSET(DPLSUBSET)

(Simple/SimpleObject,call_me,SIMPLESV)
 106

Step 4óAdding IDL to Interface
Repository

The CICS adapter needs to be able to obtain the IDL for the COBOL server
from the Interface Repository, so that it knows what data types it has to
marshal into CICS for the server, and what data types it can expect back
from the CICS APPC transaction or CICS EXCI program. Ensure that the
relevant IDL for the server has been added to the Interface Repository before
the CICS adapter is started.

To add IDL to the Interface Repository, the Interface Repository must be
running. You can use the JCL in orbixhlq.JCL(IFR) to start it. The Interface
Repository uses the Orbix E2A configuration member for its settings. The
JCL that you use to start the Interface Repository uses a configuration
member that is provided in orbixhlq.DOMAINS(FILEDOMA).

The following JCL that adds IDL to the Interface Repository is supplied in
orbixhlq.DEMOS.CICS.COBOL.BUILD.JCL(SIMPLEREG).

// JCLLIB ORDER=(HLQ.ASP50.PROCS)
// INCLUDE MEMBER=(ORXVARS)
//IDLCBL EXEC ORXIDL,
// SOURCE=SIMPLE,
// IDL=&ORBIX..DEMOS.IDL,
// COPYLIB=&ORBIX..DEMOS.CICS.COBOL.COPYLIB,
// IMPL=&ORBIX..DEMOS.CICS.COBOL.SRC,
// IDLPARM=’-R’
107

CHAPTER 4 |
Step 5óObtaining the adapter
IOR

The final step is to use the resolve command, to obtain the IOR that the
client needs to locate the CICS adapter. To obtain the CICS adapter�s IOR,
the following prerequisites apply:

ï The Interface Repository must be running and contain the relevant IDL.
See �Step 4�Adding IDL to Interface Repository� on page 107 for
details of how to start it, if it is not already running.

ï The CICS adapter must be running. See the CICS Adapter
Administratorís Guide for more details about it and how to start it.

ï The CICS adapter mapping file must contain the relevant mapping
entries. For the purposes of this example, ensure that the
orbixhlq.DEMOS.CICS.MFAMAP(SIMPLEA) mapping member is being
used. See the CICS Adapter Administratorís Guide for details about
adapter mapping files.

The following JCL, which includes the resolve command to obtain the IOR,
is supplied in orbixhlq.DEMOS.CICS.COBOL.BUILD.JCL(SIMPLIOR).

// JCLLIB ORDER=(HLQ.ASP50.PROCS)
// INCLUDE MEMBER=(ORXVARS)
//REG EXEC PROC=ORXADMIN,
// PPARM=’mfa resolve Simple/SimpleObject > DD:IOR’
//IOR DD DSN=&ORBIX..DEMOS.IORS(SIMPLE),DISP=SHR
 108

Developing and Running the Client

Overview This section describes the steps you must follow to develop, and
subsequently run, the client executable for your application.

Steps to develop the client The steps to develop and run the client application are:

Note: The Orbix E2A IDL compiler does not generate COBOL client stub
code.

Step Action

1 �Writing the Client� on page 110.

2 �Building and Running the Client� on page 115.
109

CHAPTER 4 |
Writing the Client

The client program The next step is to write the client program, to implement the client. This
example uses the supplied SIMPLECL client demonstration.

Example of the SIMPLECL
program

The following is an example of the SIMPLECL program:

Example 9: The SIMPLECL Demonstration Program (Sheet 1 of 3)

IDENTIFICATION DIVISION.
PROGRAM-ID. SIMPLECL.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

COPY IORSLCT REPLACING
"X-IOR" BY SIMPLE-SIMPLEOBJECT-IOR
"X-IORFILE" BY "IORFILE"
"X-IOR-STAT" BY SIMPLE-SIMPLEOBJECT-IOR-STAT.

DATA DIVISION.
FILE SECTION.

COPY IORFD REPLACING
"X-IOR" BY SIMPLE-SIMPLEOBJECT-IOR
"X-REC" BY SIMPLE-SIMPLEOBJECT-REC.

WORKING-STORAGE SECTION.

COPY SIMPLE.
COPY CORBA.

01 WS-SIMPLE-IOR PICTURE X(2048).
01 SIMPLE-IOR-LENGTH PICTURE 9(9) BINARY

VALUE 2048.
01 SIMPLE-SIMPLEOBJECT-IOR-STAT PICTURE 9(02).
01 SIMPLE-SIMPLEOBJECT-OBJ POINTER

VALUE NULL.
01 ARG-LIST PICTURE X(1)

VALUE SPACES.
01 ARG-LIST-LEN PICTURE 9(09) BINARY

VALUE 0.
 110

01 ORB-NAME PICTURE X(10)
VALUE "simple_orb".

01 ORB-NAME-LEN PICTURE 9(09) BINARY
VALUE 10.

01 IOR-REC-PTR POINTER
VALUE NULL.

01 IOR-REC-LEN PICTURE 9(09) BINARY
VALUE 2048.

COPY PROCPARM.
1 CALL "ORBSTAT" USING ORBIX-STATUS-INFORMATION.

* ORB initialization
DISPLAY "Initializing the ORB".

2 CALL "ORBARGS" USING ARG-LIST
ARG-LIST-LEN
ORB-NAME
ORB-NAME-LEN.

SET WS-ORBARGS TO TRUE.
PERFORM CHECK-STATUS.

* Register interface TypeTest
DISPLAY "Registering the Interface".

3 CALL "ORBREG" USING SIMPLE-SIMPLEOBJECT-INTERFACE.
SET WS-ORBREG TO TRUE.
PERFORM CHECK-STATUS.

*
4 ** Read in the IOR from a file which has been populated

** by the server program.
*

OPEN INPUT SIMPLE-SIMPLEOBJECT-IOR.
COPY CHKFILE REPLACING

"X-IOR-STAT" BY SIMPLE-SIMPLEOBJECT-IOR-STAT.

DISPLAY "Reading object reference from file".
READ SIMPLE-SIMPLEOBJECT-IOR.
COPY CHKFILE REPLACING

"X-IOR-STAT" BY SIMPLE-SIMPLEOBJECT-IOR-STAT.

MOVE SIMPLE-SIMPLEOBJECT-REC TO WS-SIMPLE-IOR.

* IOR Record read successfully
CLOSE SIMPLE-SIMPLEOBJECT-IOR.
COPY CHKFILE REPLACING

Example 9: The SIMPLECL Demonstration Program (Sheet 2 of 3)
111

CHAPTER 4 |
"X-IOR-STAT" BY SIMPLE-SIMPLEOBJECT-IOR-STAT.
* Set the COBOL pointer to point to the IOR string

5 CALL "STRSET" USING IOR-REC-PTR
IOR-REC-LEN
WS-SIMPLE-IOR.

SET WS-STRSET TO TRUE.
PERFORM CHECK-STATUS.

* Obtain object reference from the IOR
6 CALL "STRTOOBJ" USING IOR-REC-PTR

SIMPLE-SIMPLEOBJECT-OBJ

SET WS-STRTOOBJ TO TRUE.
PERFORM CHECK-STATUS.

* Releasing the memory
CALL "STRFREE" USING IOR-REC-PTR.
SET WS-STRFREE TO TRUE.
PERFORM CHECK-STATUS.

SET SIMPLE-SIMPLEOBJECT-CALL-ME TO TRUE
DISPLAY "invoking Simple::" SIMPLE-SIMPLEOBJECT-OPERATION.

7 CALL "ORBEXEC" USING SIMPLE-SIMPLEOBJECT-OBJ
SIMPLE-SIMPLEOBJECT-OPERATION
SIMPLE-SIMPLEOBJECT-70FE-ARGS
SIMPLE-USER-EXCEPTIONS.

SET WS-ORBEXEC TO TRUE.
PERFORM CHECK-STATUS.

CALL "OBJREL" USING SIMPLE-SIMPLEOBJECT-OBJ.
SET WS-OBJREL TO TRUE.
PERFORM CHECK-STATUS.

DISPLAY "Simple demo complete.".

EXIT-PRG.
*========.
STOP RUN.

**
* Check Errors Copybook
**

COPY CHKERRS.

Example 9: The SIMPLECL Demonstration Program (Sheet 3 of 3)
 112

Explanation of the SIMPLECL
program

The SIMPLECL program can be explained as follows:

1. ORBSTAT is called to register the ORBIX-STATUS-INFORMATION block that
is contained in the CORBA copybook. Registering the
ORBIX-STATUS-INFORMATION block allows the COBOL runtime to
populate it with exception information, if necessary.

You can use the ORBIX-STATUS-INFORMATION data item (in the CORBA
copybook) to check the status of any Orbix call. The EXCEPTION-NUMBER
numeric data item is important in this case. If this item is 0, it means
the call was successful. Otherwise, EXCEPTION-NUMBER holds the
system exception number that occurred. You should test this data item
after any Orbix call.

2. ORBARGS is called to initialize a connection to the ORB.

3. ORBREG is called to register the IDL interface with the Orbix COBOL
runtime.

4. The client reads the stringified object reference for the object from the
PDS member that has been populated by the server. For the purposes
of this example, the IOR member is contained in
orbixhlq.DEMOS.IORS(SIMPLE).

5. STRSET is called to create an unbounded string to which the stringified
object reference is copied.

6. STRTOOBJ is called to create an object reference to the server object
that is represented by the IOR. This must be done to allow operation
invocations on the server. The STRTOOBJ call takes an interoperable
stringified object reference and produces an object reference pointer.
This pointer is used in all method invocations. See the CORBA
Programmerís Reference, C++ for more details about stringified
object references

7. After the object reference is created, ORBEXEC is called to invoke
operations on the server object represented by that object reference.
You must pass the object reference, the operation name, the argument
description packet, and the user exception buffer. The operation name
must have at least one trailing space. The generated operation
condition names found in the SIMPLE copybook already handle this.
113

CHAPTER 4 |
The same argument description is used by the server, and is found in
the SIMPLE copybook. For example, see
orbixhlq.DEMOS.COBOL.COPYLIB(SIMPLE).

Location of the SIMPLECL
program

You can find a complete version of the SIMPLECL client program in
orbixhlq.DEMOS.COBOL.SRC(SIMPLECL).
 114

Building and Running the Client

JCL to build the client Sample JCL used to compile and link the client can be found in the third
step of orbixhlq.DEMOS.COBOL.BUILD.JCL(SIMPLECB).

Resulting load module When the JCL has successfully executed, it results in a load module that is
contained in orbixhlq.DEMOS.COBOL.LOAD(SIMPLECL).

JCL to run the client Provided the CICS adapter has been started, you can use the following JCL
to run the supplied SIMPLECL client application:

Client output The following is an example of the output produced by the batch client for
the supplied demonstration:

orbixhlq.DEMOS.COBOL.RUN.JCL(SIMPLECL)

Note: See the CICS Adapter Administratorís Guide for details of how to
start the CICS adapter.

Initializing the ORB
Registering the Interface
Reading object reference from file
invoking Simple::call_me
Simple demo complete.
115

CHAPTER 4 |
 116

CHAPTER 5

IDL Interfaces
The CORBA Interface Definition Language (IDL) is used to
describe the interfaces of objects in an enterprise application.
An objectís interface describes that object to potential clients
through its attributes and operations, and their signatures.
This chapter describes IDL semantics and uses.

In this chapter This chapter discusses the following topics:

IDL page 118

Modules and Name Scoping page 119

Interfaces page 120

IDL Data Types page 140

Defining Data Types page 154
117

CHAPTER 5 | IDL Interfaces
IDL

Overview An IDL-defined object can be implemented in any language that IDL maps
to, including C++, Java, COBOL, and PL/I. By encapsulating object
interfaces within a common language, IDL facilitates interaction between
objects regardless of their actual implementation. Writing object interfaces
in IDL is therefore central to achieving the CORBA goal of interoperability
between different languages and platforms.

IDL standard mappings CORBA defines standard mappings from IDL to several programming
languages, including C++, Java, COBOL, and PL/I. Each IDL mapping
specifies how an IDL interface corresponds to a language-specific
implementation. The Orbix E2A IDL compiler uses these mappings to
convert IDL definitions to language-specific definitions that conform to the
semantics of that language.

Overall structure You create an application�s IDL definitions within one or more IDL modules.
Each module provides a naming context for the IDL definitions within it.
Modules and interfaces form naming scopes, so identifiers defined inside an
interface need to be unique only within that interface.

IDL definition structure In the following example, two interfaces, Bank and Account, are defined
within the BankDemo module:

module BankDemo
{
interface Bank {

//…
};

interface Account {
//…

};
};
 118

Modules and Name Scoping
Modules and Name Scoping

Resolving a name To resolve a name, the IDL compiler conducts a search among the following
scopes, in the order outlined:

1. The current interface.

2. Base interfaces of the current interface (if any).

3. The scopes that enclose the current interface.

Referencing interfaces Interfaces can reference each other by name alone within the same module.
If an interface is referenced from outside its module, its name must be fully
scoped with the following syntax:

module-name::interface-name

For example, the fully scoped names of the Bank and Account interfaces
shown in �IDL definition structure� on page 118 are, respectively,
BankDemo::Bank and BankDemo::Account.

Nesting restrictions A module cannot be nested inside a module of the same name. Likewise,
you cannot directly nest an interface inside a module of the same name. To
avoid name ambiguity, you can provide an intervening name scope as
follows:

module A
{

module B
{

interface A {
//…

};
};

};
119

CHAPTER 5 | IDL Interfaces
Interfaces

In this section The following topics are discussed in this section:

Overview Interfaces are the fundamental abstraction mechanism of CORBA. An
interface defines a type of object, including the operations that object
supports in a distributed enterprise application.

Every CORBA object has exactly one interface. However, the same interface
can be shared by many CORBA objects in a system. CORBA object
references specify CORBA objects (that is, interface instances). Each
reference denotes exactly one object, which provides the only means by
which that object can be accessed for operation invocations.

Because an interface does not expose an object�s implementation, all
members are public. A client can access variables in an object�s
implementation only through an interface�s operations and attributes.

Operations and attributes An IDL interface generally defines an object�s behavior through operations
and attributes:

ï Operations of an interface give clients access to an object�s behavior.
When a client invokes an operation on an object, it sends a message to
that object. The ORB transparently dispatches the call to the object,

Interface Contents page 122

Operations page 123

Attributes page 126

Exceptions page 127

Empty Interfaces page 128

Inheritance of Interfaces page 129

Multiple Inheritance page 130
 120

Interfaces
whether it is in the same address space as the client, in another
address space on the same machine, or in an address space on a
remote machine.

ï An IDL attribute is short-hand for a pair of operations that get and,
optionally, set values in an object.

Account interface IDL sample In the following example, the Account interface in the BankDemo module
describes the objects that implement the bank accounts:

Code explanation This interface has two readonly attributes, AccountId and balance, which
are respectively defined as typedefs of the string and float types. The
interface also defines two operations, withdraw() and deposit(), which a
client can invoke on this object.

module BankDemo
{

typedef float CashAmount; // Type for representing cash
typedef string AccountId; //Type for representing account ids
//…
interface Account {

readonly attribute AccountId account_id;
readonly attribute CashAmount balance;

void
withdraw(in CashAmount amount)
raises (InsufficientFunds);

void
deposit(in CashAmount amount);

};
};
121

CHAPTER 5 | IDL Interfaces
Interface Contents

IDL interface components An IDL interface definition typically has the following components.

ï Operation definitions.

ï Attribute definitions

ï Exception definitions.

ï Type definitions.

ï Constant definitions.

Of these, operations and attributes must be defined within the scope of an
interface, all other components can be defined at a higher scope.
 122

Interfaces
Operations

Overview Operations of an interface give clients access to an object�s behavior. When
a client invokes an operation on an object, it sends a message to that object.
The ORB transparently dispatches the call to the object, whether it is in the
same address space as the client, in another address space on the same
machine, or in an address space on a remote machine.

Operation components IDL operations define the signature of an object�s function, which client
invocations on that object must use. The signature of an IDL operation is
generally composed of three components:

ï Return value data type.

ï Parameters and their direction.

ï Exception clause.

An operation�s return value and parameters can use any data types that IDL
supports.

Operations IDL sample In the following example, the Account interface defines two operations,
withdraw() and deposit(), and an InsufficientFunds exception:

Note: Not all CORBA 2.3 IDL data types are supported by COBOL or
PL/I.

module BankDemo
{

typedef float CashAmount; // Type for representing cash
//...
interface Account {

exception InsufficientFunds {};

void
withdraw(in CashAmount amount)
raises (InsufficientFunds);

void
deposit(in CashAmount amount);

};
};
123

CHAPTER 5 | IDL Interfaces
Code explanation On each invocation, both operations expect the client to supply an argument
for the amount parameter, and return void. Invocations on the withdraw()
operation can also raise the InsufficientFunds exception, if necessary.

Parameter direction Each parameter specifies the direction in which its arguments are passed
between client and object. Parameter-passing modes clarify operation
definitions and allow the IDL compiler to accurately map operations to a
target programming language. The COBOL runtime uses parameter-passing
modes to determine in which direction or directions it must marshal a
parameter.

Parameter-passing mode
qualifiers

There are three parameter-passing mode qualifiers:

In general, you should avoid using inout parameters. Because an inout
parameter automatically overwrites its initial value with a new value, its
usage assumes that the caller has no use for the parameter�s original value.
Thus, the caller must make a copy of the parameter in order to retain that
value. By using the two parameters, in and out, the caller can decide for
itself when to discard the parameter.

One-way operations By default, IDL operations calls are synchronousóthat is, a client invokes an
operation on an object and blocks until the invoked operation returns. If an
operation definition begins with the keyword oneway, a client that calls the
operation remains unblocked while the object processes the call.

in This means that the parameter is initialized only by the
client and is passed to the object.

out This means that the parameter is initialized only by the
object and returned to the client.

inout This means that the parameter is initialized by the client
and passed to the server; the server can modify the value
before returning it to the client.

Note: The COBOL runtime does not support one-way operations.
 124

Interfaces
The COBOL runtime cannot guarantee the success of a one-way operation
call. Because one-way operations do not support return data to the client,
the client cannot ascertain the outcome of its invocation. The COBOL
runtime indicates failure of a one-way operation only if the call fails before it
exits the client�s address space; in this case, the COBOL runtime raises a
system exception.

A client can also issue non-blocking, or asynchronous, invocations. Refer to
the CORBA Programmerís Guide, C++ for more details.

One-way operation constraints Three constraints apply to a one-way operation:

♦ The return value must be set to void.

♦ Directions of all parameters must be set to in.

♦ No raises clause is allowed.

One-way operation IDL sample In the following example, the Account interface defines a one-way operation
that sends a notice to an Account object:

module BankDemo {
//…
interface Account {

oneway void notice(in string text);
//…

};
};
125

CHAPTER 5 | IDL Interfaces
Attributes

Overview An interface�s attributes correspond to the variables that an object
implements. Attributes indicate which variable in an object are accessible to
clients.

Qualified and unqualified
attributes

Unqualified attributes map to a pair of get and set functions in the
implementation language, which allow client applications to read and write
attribute values. An attribute that is qualified with the readonly keyword
maps only to a get function.

IDL readonly attributes sample For example the Account interface defines two readonly attributes,
AccountId and balance. These attributes represent information about the
account that only the object�s implementation can set; clients are limited to
readonly access:

Code explanation The Account interface has two readonly attributes, AccountId and balance,
which are respectively defined as typedefs of the string and float types.
The interface also defines two operations, withdraw() and deposit(),
which a client can invoke on this object.

module BankDemo
{

typedef float CashAmount; // Type for representing cash
typedef string AccountId; //Type for representing account ids
//…
interface Account {

readonly attribute AccountId account_id;
readonly attribute CashAmount balance;

void
withdraw(in CashAmount amount)
raises (InsufficientFunds);

void
deposit(in CashAmount amount);

};
};
 126

Interfaces
Exceptions

IDL and exceptions IDL operations can raise one or more CORBA-defined system exceptions.
You can also define your own exceptions and explicitly specify these in an
IDL operation. An IDL exception is a data structure that can contain one or
more member fields, formatted as follows:

Exceptions that are defined at module scope are accessible to all operations
within that module; exceptions that are defined at interface scope are
accessible on to operations within that interface.

The raises clause After you define an exception, you can specify it through a raises clause in
any operation that is defined within the same scope. A raises clause can
contain multiple comma-delimited exceptions:

Example of IDL-defined
exceptions

The Account interface defines the InsufficientFunds exception with a
single member of the string data type. This exception is available to any
operation within the interface. The following IDL defines the withdraw()
operation to raise this exception when the withdrawal fails:

exception exception-name {
[member;]…

};

return-val operation-name([params-list])
raises(exception-name[, exception-name]);

module BankDemo
{

typedef float CashAmount; // Type for representing cash
//…
interface Account {

exception InsufficientFunds {};

void
withdraw(in CashAmount amount)
raises (InsufficientFunds);
//…

};
};
127

CHAPTER 5 | IDL Interfaces
Empty Interfaces

Defining empty interfaces IDL allows you to define empty interfaces. This can be useful when you wish
to model an abstract base interface that ties together a number of concrete
derived interfaces.

IDL empty interface sample In the following example, the CORBA PortableServer module defines the
abstract Servant Manager interface, which serves to join the interfaces for
two servant manager types, ServantActivator and ServantLocator:

module PortableServer
{

interface ServantManager {};

interface ServantActivator : ServantManager {
//…

};

interface ServantLocator : ServantManager {
//…

};
};
 128

Interfaces
Inheritance of Interfaces

Inheritance overview An IDL interface can inherit from one or more interfaces. All elements of an
inherited, or base interface, are available to the derived interface. An
interface specifies the base interfaces from which it inherits, as follows:

Inheritance interface IDL sample In the following example, the CheckingAccount and SavingsAccount
interfaces inherit from the Account interface, and implicitly include all its
elements:

Code sample explanation An object that implements the CheckingAccount interface can accept
invocations on any of its own attributes and operations as well as
invocations on any of the elements of the Account interface. However, the
actual implementation of elements in a CheckingAccount object can differ
from the implementation of corresponding elements in an Account object.
IDL inheritance only ensures type-compatibility of operations and attributes
between base and derived interfaces.

interface new-interface : base-interface[, base-interface]…
{…};

module BankDemo{
typedef float CashAmount; // Type for representing cash
interface Account {

//…
};

interface CheckingAccount : Account {
readonly attribute CashAmount overdraftLimit;
boolean orderCheckBook ();

};

interface SavingsAccount : Account {
float calculateInterest ();

};
};
129

CHAPTER 5 | IDL Interfaces
Multiple Inheritance

Multiple inheritance IDL sample In the following IDL definition, the BankDemo module is expanded to include
the PremiumAccount interface, which inherits from the CheckingAccount and
SavingsAccount interfaces:

Multiple inheritance constraints Multiple inheritance can lead to name ambiguity among elements in the
base interfaces. The following constraints apply:

ï Names of operations and attributes must be unique across all base
interfaces.

ï If the base interfaces define constants, types, or exceptions of the same
name, references to those elements must be fully scoped.

module BankDemo {
interface Account {

//…
};

interface CheckingAccount : Account {
//…

};

interface SavingsAccount : Account {
//…

};

interface PremiumAccount :
CheckingAccount, SavingsAccount {
//…

};
};
 130

Interfaces
Inheritance hierarchy diagram Figure 4 shows the inheritance hierarchy for the Account interface, which is
defined in �Multiple inheritance IDL sample� on page 130.

Figure 4: Inheritance Hierarchy for PremiumAccount Interface

Account

SavingsAccountCheckingAccount

PremiumAccount
131

CHAPTER 5 | IDL Interfaces
Inheritance of the Object Interface

User-defined interfaces All user-defined interfaces implicitly inherit the predefined interface Object.
Thus, all Object operations can be invoked on any user-defined interface.
You can also use Object as an attribute or parameter type to indicate that
any interface type is valid for the attribute or parameter.

Object locator IDL sample For example, the following operation getAnyObject() serves as an
all-purpose object locator:

interface ObjectLocator {
void getAnyObject (out Object obj);

};

Note: It is illegal in IDL syntax to explicitly inherit the Object interface.
 132

Interfaces
Inheritance Redefinition

Overview A derived interface can modify the definitions of constants, types, and
exceptions that it inherits from a base interface. All other components that
are inherited from a base interface cannot be changed.

Inheritance redefinition IDL
sample

In the following example, the CheckingAccount interface modifies the
definition of the InsufficientFunds exception, which it inherits from the
Account interface:

module BankDemo
{

typedef float CashAmount; // Type for representing cash
//…
interface Account {

exception InsufficientFunds {};
//…

};
interface CheckingAccount : Account {

exception InsufficientFunds {
CashAmount overdraftLimit;

};
};
//…

};

Note: While a derived interface definition cannot override base operations
or attributes, operation overloading is permitted in interface
implementations for those languages, such as C++, which support it.
However, COBOL does not support operation overloading.
133

CHAPTER 5 | IDL Interfaces
Forward Declaration of IDL Interfaces

Overview An IDL interface must be declared before another interface can reference it.
If two interfaces reference each other, the module must contain a forward
declaration for one of them; otherwise, the IDL compiler reports an error. A
forward declaration only declares the interface�s name; the interface�s actual
definition is deferred until later in the module.

Forward declaration IDL sample In the following example, the Bank interface defines a create_account()
and find_account() operation, both of which return references to Account
objects. Because the Bank interface precedes the definition of the Account
interface, Account is forward-declared:

module BankDemo
{

typedef float CashAmount; // Type for representing cash
typedef string AccountId; //Type for representing account ids

// Forward declaration of Account
interface Account;

// Bank interface...used to create Accounts
interface Bank {

exception AccountAlreadyExists { AccountId account_id; };
exception AccountNotFound { AccountId account_id; };

Account
find_account(in AccountId account_id)
raises(AccountNotFound);

Account
create_account(

in AccountId account_id,
in CashAmount initial_balance

) raises (AccountAlreadyExists);
};

// Account interface…used to deposit, withdraw, and query
// available funds.
interface Account { //…
};

};
 134

Interfaces
Local Interfaces

Overview An interface declaration that contains the IDL local keyword defines a local
interface. An interface declaration that omits this keyword can be referred to
as an unconstrained interface, to distinguish it from local interfaces. An object
that implements a local interface is a local object.

Characteristics Local interfaces differ from unconstrained interfaces in the following ways:

ï A local interface can inherit from any interface, whether local or
unconstrained. Unconstrained interfaces cannot inherit from local
interfaces.

ï Any non-interface type that uses a local interface is regarded as a local
type. For example, a struct that contains a local interface member is
regarded as a local struct, and is subject to the same localization
constraints as a local interface.

ï Local types can be declared as parameters, attributes, return types, or
exceptions only in a local interface, or as state members of a valuetype.

ï Local types cannot be marshalled, and references to local objects
cannot be converted to strings through ORB::object_to_string(). Any
attempts to do so throw a CORBA::MARSHAL exception.

ï Any operation that expects a reference to a remote object cannot be
invoked on a local object. For example, you cannot invoke any DII
operations or asynchronous methods on a local object; similarly, you
cannot invoke pseudo-object operations such as is_a() or
validate_connection(). Any attempts to do so throw a
CORBA::NO_IMPLEMENT exception.

ï The ORB does not mediate any invocations on a local object. Thus,
local interface implementations are responsible for providing the
parameter copy semantics that a client expects.

Note: The COBOL runtime and the Orbix E2A IDL compiler do not
support local interfaces.
135

CHAPTER 5 | IDL Interfaces
ï Instances of local objects that the OMG defines, as supplied by ORB
products, are exposed either directly or indirectly through
ORB::resolve_initial_references().

Implementation Local interfaces are implemented by CORBA::LocalObject to provide
implementations of Object pseudo-operations, and other ORB-specific
support mechanisms that apply. Because object implementations are
language-specific, the LocalObject type is only defined by each language
mapping.

Local object pseudo-operations The LocalObject type implements the Object pseudo-operations shown in
Table 15.

Table 15: CORBA::LocalObject Pseudo-Operations and Return Values

Operation Always returnsÖ

is_a() an exception of NO_IMPLEMENT:

get_interface() an exception of NO_IMPLEMENT:

get_domain_managers() an exception of NO_IMPLEMENT:

get_policy() an exception of NO_IMPLEMENT:

get_client_policy() an exception of NO_IMPLEMENT:

set_policy_overrides() an exception of NO_IMPLEMENT:

get_policy_overrides() an exception of NO_IMPLEMENT:

validate_connection() an exception of NO_IMPLEMENT:

non_existent() false.

hash() a hash value that is consistent with the
object�s lifetime.

is_equivalent() true, if the references refer to the same
LocalObject implementation.
 136

Interfaces
Valuetypes

Overview Valuetypes enable programs to pass objects by value across a distributed
system. This type is especially useful for encapsulating lightweight data
such as linked lists, graphs, and dates.

Characteristics Valuetypes can be seen as a cross between the following:

ï Data types, such as long and string, which can be passed by value
over the wire as arguments to remote invocations.

ï Objects, which can only be passed by reference.

When a program supplies an object reference, the object remains in its
original location; subsequent invocations on that object from other address
spaces move across the network, rather than the object moving to the site of
each request.

Valuetype support Like an interface, a valuetype supports both operations and inheritance from
other valuetypes; it also can have data members. When a valuetype is
passed as an argument to a remote operation, the receiving address space
creates a copy of it. The copied valuetype exists independently of the
original; operations that are invoked on one have no effect on the other.

Valuetype invocations Because a valuetype is always passed by value, its operations can only be
invoked locally. Unlike invocations on objects, valuetype invocations are
never passed over the wire to a remote valuetype.

Note: The COBOL runtime and the Orbix E2A IDL compiler do not
support valuetypes.
137

CHAPTER 5 | IDL Interfaces
Valuetype implementations Valuetype implementations necessarily vary, depending on the languages
used on sending and receiving ends of the transmission, and their respective
abilities to marshal and demarshal the valuetype�s operations. A receiving
process that is written in C++ must provide a class that implements
valuetype operations and a factory to create instances of that class. These
classes must be either compiled into the application, or made available
through a shared library. Conversely, Java applications can marshal enough
information on the sender, so the receiver can download the bytecodes for
the valuetype operation implementations.
 138

Interfaces
Abstract Interfaces

Overview An application can use abstract interfaces to determine at runtime whether
an object is passed by reference or by value.

IDL abstract interface sample In the following example, the IDL definitions specify that the
Example::display() operation accepts any derivation of the abstract
interface, Describable:

Abstract interface IDL sample Based on the preceding IDL, you can define two derivations of the
Describable abstract interface�the Currency valuetype and the Account
interface:

Note: The COBOL runtime and the Orbix E2A IDL compiler do not
support abstract interfaces.

abstract interface Describable {
string get_description();

};

interface Example {
void display(in Describable someObject);

};

interface Account : Describable {
// body of Account definition not shown

};

valuetype Currency supports Describable {
// body of Currency definition not shown

};

Note: Because the parameter for display() is defined as a Describable
type, invocations on this operation can supply either Account objects or
Currency valuetypes.
139

CHAPTER 5 | IDL Interfaces
IDL Data Types

In this section The following topics are discussed in this section:

Data type categories In addition to IDL module, interface, valuetype, and exception types, IDL
data types can be grouped into the following categories:

ï Built-in types such as short, long, and float.

ï Extended built-in types such as long long and wstring.

ï Complex types such as enum, struct, and string.

ï Pseudo objects.

Built-in Data Types page 141

Extended Built-in Data Types page 143

Complex Data Types page 146

Enum Data Type page 147

Struct Data Type page 148

Union Data Type page 149

Arrays page 151

Sequence page 152

Pseudo Object Types page 153

Note: Not all CORBA 2.3 IDL data types are supported by COBOL or
PL/I.
 140

IDL Data Types
Built-in Data Types

List of types, sizes, and values Table 16 shows a list of CORBA IDL built-in data types (where the ≤ symbol
means �less than or equal to�).

Floating point types The float and double types follow IEEE specifications for single-precision
and double-precision floating point values, and on most platforms map to
native IEEE floating point types.

Table 16: Built-in IDL Data Types, Sizes, and Values

Data type Size Range of values

short ≤ 16 bits -215...215-1

unsigned short ≤ 16 bits 0...216-1

long ≤ 32 bits �231...231-1

unsigned long ≤ 32 bits 0...232-1

float ≤ 32 bits IEEE single-precision floating
point numbers

double ≤ 64 bits IEEE double-precision
floating point numbers

char ≤ 8 bits ISO Latin-1

string Variable length ISO Latin-1, except NUL

string<bound> Variable length ISO Latin-1, except NUL

boolean Unspecified TRUE or FALSE

octet ≤ 8 bits 0x0 to 0xff

any Variable length Universal container type
141

CHAPTER 5 | IDL Interfaces
Char type The char type can hold any value from the ISO Latin-1 character set. Code
positions 0-127 are identical to ASCII. Code positions 128-255 are
reserved for special characters in various European languages, such as
accented vowels.

String type The string type can hold any character from the ISO Latin-1 character set,
except NUL. IDL prohibits embedded NUL characters in strings. Unbounded
string lengths are generally constrained only by memory limitations. A
bounded string, such as string<10>, can hold only the number of
characters specified by the bounds, excluding the terminating NUL character.
Thus, a string<6> can contain the six-character string, cheese.

Bounded and unbounded strings The declaration statement can optionally specify the string�s maximum
length, thereby determining whether the string is bounded or unbounded:

string[length] name

For example, the following code declares the ShortString type, which is a
bounded string with a maximum length of 10 characters:

typedef string<10> ShortString;

attribute ShortString shortName; // max length is 10 chars

Octet type Octet types are guaranteed not to undergo any conversions in transit. This
lets you safely transmit binary data between different address spaces. Avoid
using the char type for binary data, inasmuch as characters might be
subject to translation during transmission. For example, if a client that uses
ASCII sends a string to a server that uses EBCDIC, the sender and receiver
are liable to have different binary values for the string�s characters.

Any type The any type allows specification of values that express any IDL type, which
is determined at runtime; thereby allowing a program to handle values
whose types are not known at compile time. An any logically contains a
TypeCode and a value that is described by the TypeCode. A client or server
can construct an any to contain an arbitrary type of value and then pass this
call in a call to the operation. A process receiving an any must determine
what type of value it stores and then extract the value via the TypeCode.
Refer to the CORBA Programmerís Guide, C++ for more details about the
any type.
 142

IDL Data Types

2 (w i n g) 2 (s N T . t)] T J
 2 3 8 5 2 7 3 3 - 2 . 1 1 3 3 T D
 - 0 . 0 6 0 3 T c
 - 0 . 0 0 0 2 T c
 - w c h a r S i
Extended Built-in Data Types

List of types, sizes, and values Table 17 shows a list of CORBA IDL extended built-in data types (where the
≤ symbol means �less than or equal to�).

Long long type The 64-bit integer types, long long and unsigned long long, support
numbers that are too large for 32-bit integers. Platform support varies. If
you compile IDL that contains one of these types on a platform that does not
support it, the compiler issues an error.

Table 17: Extended built-in IDL Data Types, Sizes, and Values

Data Type Size Range of Values

long longa ≤ 64 bits �263...263-1

unsigned long longa ≤ long el
143

CHAPTER 5 | IDL Interfaces
Long double type Like 64-bit integer types, platform support varies for the long double type,
so usage can yield IDL compiler errors.

Wchar type The wchar type encodes wide characters from any character set. The size of
a wchar is platform-dependent. Because Orbix E2A currently does not
support character set negotiation, use this type only for applications that are
distributed across the same platform.

Wstring type The wstring type is the wide-character equivalent of the string type. Like
string types, wstring types can be unbounded or bounded. Wide strings
can contain any character except NUL.

Fixed type IDL specifies that the fixed type provides fixed-point arithmetic values with
up to 31 significant digits. However, due to restrictions in the COBOL
compiler for OS/390, only up to 18 significant digits are supported.

You specify a fixed type with the following format:

The format for the fixed type can be explained as follows:

ï The digit-size represents the number�s length in digits. The
maximum value for digit-size is 31 and it must be greater than
scale. A fixed type can hold any value up to the maximum value of a
double type.

ï If scale is a positive integer, it specifies where to place the decimal
point relative to the rightmost digit. For example, the following code
declares a fixed type, CashAmount, to have a digit size of 10 and a
scale of 2:

Given this typedef, any variable of the CashAmount type can contain
values of up to (+/-)99999999.99.

typedef fixed<digit-size,scale> name

typedef fixed<10,2> CashAmount;
 144

IDL Data Types
ï If scale is a negative integer, the decimal point moves to the right by
the number of digits specified for scale, thereby adding trailing zeros
to the fixed data type�s value. For example, the following code declares
a fixed type, bigNum, to have a digit size of 3 and a scale of -4:

If myBigNum has a value of 123, its numeric value resolves to 1230000.
Definitions of this sort allow you to efficiently store numbers with
trailing zeros.

Constant fixed types Constant fixed types can also be declared in IDL, where digit-size and
scale are automatically calculated from the constant value. For example:

This yields a fixed type with a digit size of 7, and a scale of 6.

Fixed type and decimal fractions Unlike IEEE floating-point values, the fixed type is not subject to
representational errors. IEEE floating point values are liable to inaccurately
represent decimal fractions unless the value is a fractional power of 2. For
example, the decimal value 0.1 cannot be represented exactly in IEEE
format. Over a series of computations with floating-point values, the
cumulative effect of this imprecision can eventually yield inaccurate results.

The fixed type is especially useful in calculations that cannot tolerate any
imprecision, such as computations of monetary values.

typedef fixed <3,-4> bigNum;

bigNum myBigNum;

module Circle {
const fixed pi = 3.142857;

};
145

CHAPTER 5 | IDL Interfaces
Complex Data Types

IDL complex data types IDL provide the following complex data types:

ï Enums.

ï Structs.

ï Multi-dimensional fixed-sized arrays.

ï Sequences.
 146

IDL Data Types
Enum Data Type

Overview An enum (enumerated) type lets you assign identifiers to the members of a
set of values.

Enum IDL sample For example, you can modify the BankDemo IDL with the balanceCurrency
enum type:

In the preceding example, the balanceCurrency attribute in the Account
interface can take any one of the values pound, dollar, yen, or franc.

Ordinal values of enum type The ordinal values of an enum type vary according to the language
implementation. The CORBA specification only guarantees that the ordinal
values of enumerated types monotonically increase from left to right. Thus,
in the previous example, dollar is greater than pound, yen is greater than
dollar, and so on. All enumerators are mapped to a 32-bit type.

module BankDemo {
enum Currency {pound, dollar, yen, franc};

interface Account {
readonly attribute CashAmount balance;
readonly attribute Currency balanceCurrency;
//…

};
};
147

CHAPTER 5 | IDL Interfaces
Struct Data Type

Overview A struct type lets you package a set of named members of various types.

Struct IDL sample In the following example, the CustomerDetails struct has several members.
The getCustomerDetails() operation returns a struct of the
CustomerDetails type, which contains customer data:

module BankDemo{
struct CustomerDetails {

string custID;
string lname;
string fname;
short age;
//…

};

interface Bank {
CustomerDetails getCustomerDetails

(in string custID);
//…

};
};

Note: A struct type must include at least one member. Because a struct
provides a naming scope, member names must be unique only within the
enclosing structure.
 148

IDL Data Types
Union Data Type

Overview A union type lets you define a structure that can contain only one of several
alternative members at any given time. A union type saves space in
memory, because the amount of storage required for a union is the amount
necessary to store its largest member.

Union declaration syntax You declare a union type with the following syntax:

Discriminated unions All IDL unions are discriminated. A discriminated union associates a constant
expression (label1…labeln) with each member. The discriminator�s value
determines which of the members is active and stores the union�s value.

IDL union date sample The following IDL defines a Date union type, which is discriminated by an
enum value:

union name switch (discriminator) {
case label1 : element-spec;
case label2 : element-spec;
[…]
case labeln : element-spec;
[default : element-spec;]

};

enum dateStorage
{ numeric, strMMDDYY, strDDMMYY };

struct DateStructure {
short Day;
short Month;
short Year;

};

union Date switch (dateStorage) {
case numeric: long digitalFormat;
case strMMDDYY:
case strDDMMYY: string stringFormat;
default: DateStructure structFormat;

};
149

CHAPTER 5 | IDL Interfaces
Sample explanation Given the preceding IDL:

ï If the discriminator value for Date is numeric, the digitalFormat
member is active.

ï If the discriminator�s value is strMMDDYY or strDDMMYY, the
stringFormat member is active.

ï If neither of the preceding two conditions apply, the default
structFormat member is active.

Rules for union types The following rules apply to union types:

ï A union�s discriminator can be integer, char, boolean or enum, or an
alias of one of these types; all case label expressions must be
compatible with the relevant type.

ï Because a union provides a naming scope, member names must be
unique only within the enclosing union.

ï Each union contains a pair of values: the discriminator value and the
active member.

ï IDL unions allow multiple case labels for a single member. In the
previous example, the stringFormat member is active when the
discriminator is either strMMDDYY or strDDMMYY.

ï IDL unions can optionally contain a default case label. The
corresponding member is active if the discriminator value does not
correspond to any other label.
 150

IDL Data Types
Arrays

Overview IDL supports multi-dimensional fixed-size arrays of any IDL data type, with
the following syntax (where dimension-spec must be a non-zero positive
constant integer expression):

[typedef] element-type array-name [dimension-spec]…

IDL does not allow open arrays. However, you can achieve equivalent
functionality with sequence types.

Array IDL sample For example, the following piece of code defines a two-dimensional array of
bank accounts within a portfolio:

typedef Account portfolio[MAX_ACCT_TYPES][MAX_ACCTS]

Array indexes Because of differences between implementation languages, IDL does not
specify the origin at which arrays are indexed. For example, C and C++
array indexes always start at 0, while COBOL, PL/I, and Pascal use an origin
of 1. Consequently, clients and servers cannot exchange array indexes
unless they both agree on the origin of array indexes and make adjustments
as appropriate for their respective implementation languages. Usually, it is
easier to exchange the array element itself instead of its index.

Note: For an array to be used as a parameter, an attribute, or a return
value, the array must be named by a typedef declaration. You can omit a
typedef declaration only for an array that is declared within a structure
definition.
151

CHAPTER 5 | IDL Interfaces
Sequence

Overview IDL supports sequences of any IDL data type with the following syntax:

[typedef] sequence < element-type[, max-elements] > sequence-name

An IDL sequence is similar to a one-dimensional array of elements;
however, its length varies according to its actual number of elements, so it
uses memory more efficiently.

For a sequence to be used as a parameter, an attribute, or a return value,
the sequence must be named by a typedef declaration, to be used as a
parameter, an attribute, or a return value. You can omit a typedef
declaration only for a sequence that is declared within a structure definition.

A sequence�s element type can be of any type, including another sequence
type. This feature is often used to model trees.

Bounded and unbounded
sequences

The maximum length of a sequence can be fixed (bounded) or unfixed
(unbounded):

ï Unbounded sequences can hold any number of elements, up to the
memory limits of your platform.

ï Bounded sequences can hold any number of elements, up to the limit
specified by the bound.

Bounded and unbounded IDL
definitions

The following code shows how to declare bounded and unbounded
sequences as members of an IDL struct:

struct LimitedAccounts {
string bankSortCode<10>;
sequence<Account, 50> accounts; // max sequence length is 50

};

struct UnlimitedAccounts {
string bankSortCode<10>;
sequence<Account> accounts; // no max sequence length

};
 152

IDL Data Types
Pseudo Object Types

Overview CORBA defines a set of pseudo-object types that ORB implementations use
when mapping IDL to a programming language. These object types have
interfaces defined in IDL; however, these object types do not have to follow
the normal IDL mapping rules for interfaces and they are not generally
available in your IDL specifications.

Defining You can use only the following pseudo-object types as attribute or operation
parameter types in an IDL specification:

To use these types in an IDL specification, include the orb.idl file in the
IDL file as follows:

This statement instructs the IDL compiler to allow the NamedValue and
TypeCode types.

Note: The COBOL runtime and the Orbix E2A IDL compiler do not
support all pseudo object types.

CORBA::NamedValue
CORBA::TypeCode

#include <orb.idl>
//…
153

CHAPTER 5 | IDL Interfaces
Defining Data Types

In this section This section contains the following subsections:

Using typedef With typedef, you can define more meaningful or simpler names for existing
data types, regardless of whether those types are IDL-defined or
user-defined.

Typedef identifier IDL sample The following code defines the typedef identifier, StandardAccount, so that
it can act as an alias for the Account type in later IDL definitions:

Constants page 155

Constant Expressions page 158

module BankDemo {
interface Account {

//…
};

typedef Account StandardAccount;
};
 154

Defining Data Types
155

CHAPTER 5 | IDL Interfaces
Wide character and string
constants

Wide character and string constants use C++ syntax. Use universal
character codes to represent arbitrary characters. For example:

IDL files always use the ISO Latin-1 code set; they cannot use Unicode or
other extended character sets.

Boolean constants Boolean constants use the FALSE and TRUE keywords. Their use is
unnecessary, inasmuch as they create unnecessary aliases:

Octet constants Octet constants are positive integers in the range 0-255.

Octet constants were added with CORBA 2.3; therefore, ORBs that are not
compliant with this specification might not support them.

const char C11 = '\\'; // backslash
const char C12 = '\?'; // question mark
const char C13 = '\''; // single quote
// String constants support the same escape sequences as C++
const string S1 = "Quote: \""; // string with double quote
const string S2 = "hello world"; // simple string
const string S3 = "hello" " world"; // concatenate
const string S4 = "\xA" "B"; // two characters

// ('\xA' and 'B'),
// not the single character '\xAB'

Example 10: List of character constants (Sheet 2 of 2)

const wchar C = L'X';
const wstring GREETING = L"Hello";
const wchar OMEGA = L'\u03a9';
const wstring OMEGA_STR = L"Omega: \u3A9";

// There is no need to define boolean constants:
const CONTRADICTION = FALSE; // Pointless and confusing
const TAUTOLOGY = TRUE; // Pointless and confusing

const octet O1 = 23;
const octet O2 = 0xf0;
 156

Defining Data Types
Fixed-point constants For fixed-point constants, you do not explicitly specify the digits and scale.
Instead, they are inferred from the initializer. The initializer must end in d or
D. For example:

The type of a fixed-point constant is determined after removing leading and
trailing zeros. The remaining digits are counted to determine the digits and
scale. The decimal point is optional.

Currently, there is no way to control the scale of a constant if it ends in
trailing zeros.

Enumeration constants Enumeration constants must be initialized with the scoped or unscoped
name of an enumerator that is a member of the type of the enumeration. For
example:

Enumeration constants were added with CORBA 2.3; therefore, ORBs that
are not compliant with this specification might not support them.

// Fixed point constants take digits and scale from the
// initializer:
const fixed val1 = 3D; // fixed<1,0>
const fixed val2 = 03.14d; // fixed<3,2>
const fixed val3 = -03000.00D; // fixed<4,0>
const fixed val4 = 0.03D; // fixed<3,2>

enum Size { small, medium, large }

const Size DFL_SIZE = medium;
const Size MAX_SIZE = ::large;
157

CHAPTER 5 | IDL Interfaces
Constant Expressions

Overview IDL provides a number of arithmetic and bitwise operators. The arithmetic
operators have the usual meaning and apply to integral, floating-point, and
fixed-point types (except for %, which requires integral operands). However,
these operators do not support mixed-mode arithmetic: you cannot, for
example, add an integral value to a floating-point value.

Arithmetic operators The following code contains several examples of arithmetic operators:

Evaluating expressions for
arithmetic operators

Expressions are evaluated using the type promotion rules of C++. The
result is coerced back into the target type. The behavior for overflow is
undefined, so do not rely on it. Fixed-point expressions are evaluated
internally with 31 bits of precision, and results are truncated to 15 digits.

// You can use arithmetic expressions to define constants.
const long MIN = -10;
const long MAX = 30;
const long DFLT = (MIN + MAX) / 2;

// Can't use 2 here
const double TWICE_PI = 3.1415926 * 2.0;

// 5% discount
const fixed DISCOUNT = 0.05D;
const fixed PRICE = 99.99D;

// Can't use 1 here
const fixed NET_PRICE = PRICE * (1.0D - DISCOUNT);
 158

Defining Data Types
Bitwise operators Bitwise operators only apply to integral types. The right-hand operand must
be in the range 0-63. The right-shift operator, >>, is guaranteed to insert
zeros on the left, regardless of whether the left-hand operand is signed or
unsigned.

IDL guarantees two�s complement binary representation of values.

Precedence The precedence for operators follows the rules for C++. You can override
the default precedence by adding parentheses.

// You can use bitwise operators to define constants.
const long ALL_ONES = -1; // 0xffffffff
const long LHW_MASK = ALL_ONES << 16; // 0xffff0000
const long RHW_MASK = ALL_ONES >> 16; // 0x0000ffff
159

CHAPTER 5 | IDL Interfaces
 160

CHAPTER 6

IDL-to-COBOL
Mapping
The CORBA Interface Definition Language (IDL) is used to
define interfaces that are exposed by servers in your network.
This chapter describes the standard IDL-to-COBOL mapping
rules and shows, by example, how each IDL type is represented
in COBOL.

In this chapter This chapter discusses the following topics:

Mapping for Identifier Names page 163

Mapping for Type Names page 165

Mapping for Basic Types page 166

Mapping for Boolean Type page 171

Mapping for Enum Type page 174

Mapping for Char Type page 177

Mapping for Octet Type page 179

Mapping for String Types page 181

Mapping for Wide String Types page 186
161

CHAPTER 6 | IDL-to-COBOL Mapping
Mapping for Fixed Type page 187

Mapping for Struct Type page 191

Mapping for Union Type page 193

Mapping for Sequence Types page 198

Mapping for Array Type page 203

Mapping for the Any Type page 205

Mapping for User Exception Type page 207

Mapping for Typedefs page 210

Mapping for the Object Type page 213

Mapping for Constant Types page 215

Mapping for Operations page 218

Mapping for Attributes page 223

Mapping for Operations with a Void Return Type and No Parameters
page 224

Mapping for Inherited Interfaces page 226

Mapping for Multiple Interfaces page 233

Note: See �IDL Interfaces� on page 117 for more details of the IDL types
discussed in this chapter.
 162

Mapping for Identifier Names
Mapping for Identifier Names

Overview This section describes how IDL identifier names are mapped to COBOL.

COBOL rules for identifiers The following rules apply for COBOL identifiers:

ï They can be a maximum of 30 characters in length.

ï They can only consist of alphanumeric and hyphen characters.

IDL-to-COBOL mapping rules
for identifiers

The following rules are used to convert an IDL identifier to a COBOL
identifier:

ï Replace each underscore with a hyphen.

ï Remove any leading or trailing hyphens.

ï If an identifier clashes with a reserved COBOL word, prefix it with the
characters IDL-. For example, d maps to IDL-D, u maps to IDL-U, and
result maps to IDL-RESULT.

ï If an identifier is greater than 30 characters, truncate it to 30
characters, by using the first 25 characters followed by a hyphen
followed by a unique alphanumeric four-character suffix.

Example The example can be broken down as follows:

1. Consider the following IDL:

module amodule
{

interface example
{

attribute boolean myverylongattribute;
boolean myverylongopname(in boolean

myverylongboolean);
};

};
163

CHAPTER 6 | IDL-to-COBOL Mapping
2. The preceding IDL maps to the following COBOL:

* Interface:
* amodule/example
*
* Mapped name:
* amodule-example
*
* Inherits interfaces:
* (none)

* Attribute: myverylongattribute
* Mapped name: myverylongattribute
* Type: boolean (read/write)

01 AMODULE-EXAMPLE-MYVE-5905-ARGS.

03 RESULT PICTURE 9(01)
BINARY.

88 RESULT-FALSE VALUE 0.
88 RESULT-TRUE VALUE 1.

* Operation: myverylongopname
* Mapped name: myverylongopname
* Arguments: <in> boolean myverylongboolean
* Returns: boolean
* User Exceptions: none

01 AMODULE-EXAMPLE-MYVE-EAB7-ARGS.

03 MYVERYLONGBOOLEAN PICTURE 9(01)
BINARY.

88 MYVERYLONGBOOLEAN-FALSE VALUE 0.
88 MYVERYLONGBOOLEAN-TRUE VALUE 1.

03 RESULT PICTURE 9(01)
BINARY.

88 RESULT-FALSE VALUE 0.
88 RESULT-TRUE VALUE 1.

Note: See �-M Argument� on page 244 and �-O Argument� on page 250
for details of the arguments that you can use with the Orbix E2A IDL
compiler to create alternative COBOL identifiers.
 164

Mapping for Type Names
Mapping for Type Names

Overview This section describes how IDL type names are mapped to COBOL.

IDL-to-COBOL mapping for type
names

The current CORBA OMG COBOL mapping is based on the use of typedefs
for naming some IDL types. Typedefs are a non-standard extension to the
COBOL-85 standard. The IBM COBOL compiler for OS/390 & VM version 2
release 1 does not support this extension.

The CORBA COBOL mapping standard includes a recent addition that
proposes the use of COPY … REPLACING syntax instead of typedefs for type
definitions. IONA currently uses the COBOL representation of each type
directly.
165

CHAPTER 6 | IDL-to-COBOL Mapping
Mapping for Basic Types

Overview This section describes how basic IDL types are mapped to COBOL.

IDL-to-COBOL mapping
for basic types

Table 18 shows the mapping rules for basic IDL types. Types not currently
supported by Orbix COBOL are denoted by italic text. The CORBA typedef
name is provided for reference purposes only; the COBOL representation is
used directly.

Table 18: Mapping for Basic IDL Types (Sheet 1 of 2)

IDL Type CORBA Typedef Name COBOL
Representation

short CORBA-short PIC S9(05) BINARY

long CORBA-long PIC S9(10) BINARY

unsigned short CORBA-unsigned-short PIC 9(05) BINARY

unsigned long CORBA-unsigned-long PIC 9(10) BINARY

float CORBA-float COMP-1

double CORBA-double COMP-2

char CORBA-char PIC X

boolean CORBA-boolean PIC 9(01) BINARY

octet CORBA-octet PIC X

enum CORBA-enum PIC 9(10) BINARY

fixed<d,s> Fixed<d,s> PIC S9(d-s)v(s)
PACKED-DECIMAL

fixed<d,-s> Fixed<d,-s> PIC S9(d)P(s)
PACKED-DECIMAL
 166

Mapping for Basic Types
Example The example can be broken down as follows:

1. Consider the following IDL:

any CORBA-any Refer to �Mapping
for the Any Type�
on page 205.

long long CORBA-long-long PIC S9(18) BINARY

unsigned long
long

CORBA-unsigned-long-long PIC 9(18) BINARY

wchar CORBA-wchar PIC G

Table 18: Mapping for Basic IDL Types (Sheet 2 of 2)

IDL Type CORBA Typedef Name COBOL
Representation

const float my_outer_float = 19.76;
const double my_outer_double = 123456.789;

interface example
{

const short my_short = 24;
const long my_long = 9999;
typedef fixed<5,2> a_fixed_5_2;
attribute short myshort;
attribute long mylong;
attribute unsigned short myushort;
attribute unsigned long myulong;
attribute float myfloat;
attribute double mydouble;
attribute char mychar;
attribute octet myoctet;
attribute a_fixed_5_2 myfixed_5_2;
attribute long long mylonglong;
attribute unsigned long long ulonglong;

};
167

CHAPTER 6 | IDL-to-COBOL Mapping
2. The preceding IDL maps to the following COBOL:

Example 11:COBOL Example for Basic Types (Sheet 1 of 3)

* Constants in root scope:

01 GLOBAL-EXAM1A-CONSTS.

03 MY-OUTER-FLOAT COMPUTATIONAL-1
VALUE 1.976e+01.

03 MY-OUTER-DOUBLE COMPUTATIONAL-2
VALUE 1.23456789e+05.

* Interface:
* example
*
* Mapped name:
* example
*
* Inherits interfaces:
* (none)

* Attribute: myshort
* Mapped name: myshort
* Type: short (read/write)

01 EXAMPLE-MYSHORT-ARGS.

03 RESULT PICTURE S9(05)
BINARY.

* Attribute: mylong
* Mapped name: mylong
* Type: long (read/write)

01 EXAMPLE-MYLONG-ARGS.

03 RESULT PICTURE S9(10)
BINARY.

* Attribute: myushort
* Mapped name: myushort
* Type: unsigned short (read/write)

01 EXAMPLE-MYUSHORT-ARGS.

03 RESULT PICTURE 9(05)
BINARY.
 168

Mapping for Basic Types

* Attribute: myulong
* Mapped name: myulong
* Type: unsigned long (read/write)

01 EXAMPLE-MYULONG-ARGS.

03 RESULT PICTURE 9(10)
BINARY.

* Attribute: myfloat
* Mapped name: myfloat
* Type: float (read/write)

01 EXAMPLE-MYFLOAT-ARGS.

03 RESULT COMPUTATIONAL-1.

* Attribute: mydouble
* Mapped name: mydouble
* Type: double (read/write)

01 EXAMPLE-MYDOUBLE-ARGS.

03 RESULT COMPUTATIONAL-2.

* Attribute: mychar
* Mapped name: mychar
* Type: char (read/write)

01 EXAMPLE-MYCHAR-ARGS.

03 RESULT PICTURE X(01).

* Attribute: myoctet
* Mapped name: myoctet
* Type: octet (read/write)

01 EXAMPLE-MYOCTET-ARGS.

03 RESULT PICTURE X(01).

* Attribute: myfixed_5_2
* Mapped name: myfixed_5_2
* Type: example/a_fixed_5_2 (read/write)

01 EXAMPLE-MYFIXED-5-2-ARGS.

03 RESULT PICTURE S9(3)V9(2)
PACKED-DECIMAL.

Example 11:COBOL Example for Basic Types (Sheet 2 of 3)
169

CHAPTER 6 | IDL-to-COBOL Mapping

* Attribute: mylonglong
* Mapped name: mylonglong
* Type: long long (read/write)

01 EXAMPLE-MYLONGLONG-ARGS.

03 RESULT PICTURE S9(18)
BINARY.

* Attribute: ulonglong
* Mapped name: ulonglong
* Type: unsigned long long (read/write)

01 EXAMPLE-ULONGLONG-ARGS.

03 RESULT PICTURE 9(18)
BINARY.

* Constants in example:

01 EXAMPLE-CONSTS.

03 MY-SHORT PICTURE S9(05)
BINARY VALUE 24.

03 MY-LONG PICTURE S9(10)
BINARY VALUE 9999.

Example 11:COBOL Example for Basic Types (Sheet 3 of 3)
 170

Mapping for Boolean Type
Mapping for Boolean Type

Overview This section describes how booleans are mapped to COBOL.

IDL-to-COBOL mapping
for booleans

An IDL boolean type maps to a COBOL PIC 9(01) integer value and has
two COBOL conditions defined, as follows:

ï A label idl-identifier-FALSE with a O value.

ï A label idl-identifier-TRUE with a 1 value.

Example The example can be broken down as follows:

1. Consider the following IDL, which is contained in an IDL member
called EXAM1:

Note: The IBM COBOL compiler for OS/390 & VM does not currently
support the non-COBOL85 >>CONSTANT construct. This is specified for the
mapping of constant boolean values. Responsibility is passed to the Orbix
E2A IDL compiler to propagate constant values. In this case, the following
mapping approach that uses Level 88 items has been chosen:

// IDL
interface example {

attribute boolean full;
boolean myop(in boolean myboolean);

}

171

CHAPTER 6 | IDL-to-COBOL Mapping
2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following COBOL in the EXAM1 copybook:

* Attribute: full
* Mapped name: full
* Type: boolean (read/write)
**
01 EXAMPLE-FULL-ARGS.

03 RESULT PICTURE 9(01) BINARY.
88 RESULT-FALSE VALUE 0.
88 RESULT-TRUE VALUE 1.

**
* Operation: myop
* Mapped name: myop
* Arguments: <in> boolean myboolean
* Returns: boolean
* User Exceptions: none

01 EXAMPLE-MYOP-ARGS.

03 MYBOOLEAN PICTURE 9(01) BINARY.
88 MYBOOLEAN-FALSE VALUE 0.
88 MYBOOLEAN-TRUE VALUE 1.

03 RESULT PICTURE 9(01) BINARY.
88 RESULT-FALSE VALUE 0.
88 RESULT-TRUE VALUE 1.

01 EXAMPLE-OPERATION PICTURE X(26).
88 EXAMPLE-GET-FULL VALUE

"_get_full:IDL:example:1.0".
88 EXAMPLE-SET-FULL VALUE

"_set_full:IDL:example:1.0".
88 EXAMPLE-MYOP VALUE

"myop:IDL:example:1.0".
01 EXAMPLE-OPERATION-LENGTH PICTURE 9(09) BINARY

VALUE 26.
 172

Mapping for Boolean Type
3. The preceding code can be used as follows:

IF RESULT-TRUE OF RESULT OF EXAMPLE-FULL-ARGS THEN
SET EXAMPLE-SET-FULL TO TRUE
ELSE
SET EXAMPLE-GET-FULL TO TRUE

END-IF
CALL "ORBEXEC" USING SERVER-OBJ

EXAMPLE-OPERATION
EXAMPLE-FULL-ARGS
EXAM1-USER-EXCEPTIONS
173

CHAPTER 6 | IDL-to-COBOL Mapping
Mapping for Enum Type

Overview This section describes how enums are mapped to COBOL.

IDL-to-COBOL mapping
for enums

An IDL enum type maps to a COBOL PIC 9(10) BINARY type. The COBOL
mapping for an enum is an unsigned integer capable of representing 2**32
enumerations (that is, 232-1 enumerations). Because IDL does not allow you
to set ordinal values for enums, each identifier in a mapped enum has a
COBOL condition defined with its own appropriate integer value, based on
the rule that integer values are incrementing and start at 0. Each identifier is
a level 88 entry.

Example The example can be broken down as follows:

1. Consider the following IDL, which is contained in an IDL member
called EXAM2:

// IDL
interface example {

enum temp {cold, warm, hot };
attribute temp attr1;
temp myop(in temp myenum);

}

 174

Mapping for Enum Type
2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following COBOL in the EXAM2 copybook:

* Attribute: attr1
* Mapped name: attr1
* Type: temp (read/write)

01 EXAMPLE-ATTR1-ARGS.

03 RESULT PICTURE 9(10) BINARY.
88 COLD VALUE 0.
88 WARM VALUE 1.
88 HOT VALUE 2.

* Operation: myop
* Mapped name: myop
* Arguments: <in> temp myenum
* Returns: temp
* User Exceptions: none

01 EXAMPLE-MYOP-ARGS.

03 MYENUM PICTURE 9(10) BINARY.
88 COLD VALUE 0.
88 WARM VALUE 1.
88 HOT VALUE 2.

03 RESULT PICTURE 9(10) BINARY.
88 COLD VALUE 0.
88 WARM VALUE 1.
88 HOT VALUE 2.
175

CHAPTER 6 | IDL-to-COBOL Mapping
3. The preceding code can be used as follows:

EVALUATE TRUE
WHEN COLD OF EXAMPLE-ATTR1-ARGS
…
WHEN WARM OF EXAMPLE-ATTR1-ARGS
…
WHEN HOT OF EXAMPLE-ATTR1-ARGS
…

END-EVALUATE
 176

Mapping for Char Type
Mapping for Char Type

Overview This section describes how char types are mapped to COBOL.

IDL-to-COBOL mapping
for char types

Char data values that are passed between machines with different character
encoding methods (for example, ASCII, EBCDIC, and so on) are translated
by the ORB.

Example The example can be broken down as follows:

1. Consider the following IDL, which is contained in an IDL member
called EXAM3:

// IDL
interface example {

attribute char achar;
char myop(in char mychar);

}

177

CHAPTER 6 | IDL-to-COBOL Mapping
2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following COBOL in the EXAM3 copybook:

* Attribute: achar
* Mapped name: achar
* Type: char (read/write)

01 EXAMPLE-ACHAR-ARGS.

03 RESULT PICTURE X(01).

* Operation: myop
* Mapped name: myop
* Arguments: <in> char mychar
* Returns: char
* User Exceptions: none

01 EXAMPLE-MYOP-ARGS.

03 MYCHAR PICTURE X(01).
03 RESULT PICTURE X(01).
 178

Mapping for Octet Type
Mapping for Octet Type

Overview This section describes how octet types are mapped to COBOL.

IDL-to-COBOL mapping
for octet types

The octet type refers to binary character data. The ORB does not translate
any octet data, even if the remote system has a different character set than
the local system (for example ASCII and EBCDIC). You should take special
care in selecting the appropriate IDL type when representing text data (that
179

CHAPTER 6 | IDL-to-COBOL Mapping
2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following COBOL in the EXAM4 copybook:

* Attribute: aoctet
* Mapped name: aoctet
* Type: octet (read/write)

01 EXAMPLE-AOCTET-ARGS.

03 RESULT PICTURE X(01).

* Operation: myop
* Mapped name: myop
* Arguments: <in> char myoctet
* Returns: octet
* User Exceptions: none

01 EXAMPLE-MYOP-ARGS.

03 MYOCTET PICTURE X(01).
03 RESULT PICTURE X(01).
 180

Mapping for String Types
Mapping for String Types

Overview This section describes how string types are mapped to COBOL. First, it
describes the various string types that are available.

Bounded and unbounded
strings

Strings can be bounded or unbounded. Bounded strings are of a specified
size, while unbounded strings have no specified size. For example:

//IDL
string<8> a_bounded_string
string an_unbounded_string

Bounded and unbounded strings are represented differently in COBOL.

Incoming bounded strings Incoming strings are passed as IN or INOUT values by the COAGET function
into the COBOL operation parameter buffer at the start of a COBOL
operation.

An incoming bounded string is represented by a COBOL PIC X(n) data item,
where n is the bounded length of the string. For example:

1. Consider the following IDL:

interface example {
typedef string<10> boundedstr;
attribute boundedstr aboundedstr;
boundedstr myop(in boundedstr myboundedstr);

};
181

CHAPTER 6 | IDL-to-COBOL Mapping
2. The preceding IDL maps to the following COBOL:

If the string that is passed is too big for the buffer, the string is truncated. If
the string is not big enough to fill the buffer, the remainder of the COBOL
string is filled with spaces.

Outgoing bounded strings Outgoing strings are copied as INOUT, OUT, or RESULT values by the COAPUT
function from the complete COBOL operation parameter buffer that is
passed to it at the end of a COBOL operation.

An outgoing bounded string has trailing spaces removed, and all characters
up to the bounded length (or the first null) are passed via COAPUT. If a null is
encountered before the bounded length, only those characters preceding the
null are passed. The remaining characters are not passed.

* Attribute: aboundedstr
* Mapped name: aboundedstr
* Type: example/boundedstr (read/write)

01 EXAMPLE-ABOUNDEDSTR-ARGS.

03 RESULT PICTURE X(10).

* Operation: myop
* Mapped name: myop
* Arguments: <in> example/boundedstr myboundedstr
* Returns: example/boundedstr
* User Exceptions: none

01 EXAMPLE-MYOP-ARGS.

03 MYBOUNDEDSTR PICTURE X(10).
03 RESULT PICTURE X(10).

 182

Mapping for String Types
Incoming unbounded strings Incoming strings are passed as IN or INOUT values by the COAGET function
into the COBOL operation parameter buffer at the start of a COBOL
operation.

An incoming unbounded string is represented as a USAGE IS POINTER data
item. For example:

1. Consider the following IDL:

2. The preceding IDL maps to the following COBOL:

interface example {
typedef string unboundedstr;
attribute unboundedstr aunboundedstr;
unboundedstr myop(in unboundedstr myunboundedstr);

};

* Attribute: aunboundedstr
* Mapped name: aunboundedstr
* Type: example/unboundedstr (read/write)

01 EXAMPLE-AUNBOUNDEDSTR-ARGS.

03 RESULT POINTER VALUE NULL.

* Operation: myop
* Mapped name: myop
* Arguments: <in> example/unboundedstr munyboundedstr
* Returns: example/unboundedstr
* User Exceptions: none

01 EXAMPLE-MYOP-ARGS.

03 MUNYBOUNDEDSTR POINTER VALUE NULL.
03 RESULT POINTER VALUE NULL.
183

CHAPTER 6 | IDL-to-COBOL Mapping
3. A pointer is supplied which refers to an area of memory containing the
string data. This string is not directly accessible. You must call the
STRGET function to copy the data into a COBOL PIC X(n) structure. For
example:

In the preceding example, the number of characters copied depends on the
value specified for SUPPLIER-NAME-LEN. This must be a valid positive integer
(that is, greater than zero); otherwise, a runtime error occurs. If the value
specified for SUPPLIER-NAME is shorter than that for SUPPLIER-NAME-LEN, the
string is still copied to SUPPLIER-NAME, but it obviously cannot contain the
complete string.

Outgoing unbounded strings Outgoing strings are copied as INOUT, OUT, or RESULT values by the COAPUT
function from the complete COBOL operation parameter buffer that is
passed to it at the end of a COBOL operation.

* This is the supplied COBOL unbounded string pointer

01 NAME USAGE IS POINTER

* This is the COBOL representation of the string

01 SUPPLIER-NAME PICTURE X(64).
01 SUPPLIER-NAME-LEN PICTURE 9(10) BINARY VALUE 64.

* This STRGET call copies the characters in the NAME
* to the SUPPLIER-NAME

CALL "STRGET" USING NAME
SUPPLIER-NAME-LEN
SUPPLIER-NAME.
 184

Mapping for String Types
A valid outgoing unbounded string must be supplied by the implementation
of an operation. This can be either a pointer that was obtained by an IN or
INOUT parameter, or a string constructed by using the STRSET function. For
example:

Trailing spaces are removed from the constructed string. If trailing spaces
are required, you can use the STRSETP function, with the same argument
signature, to copy the specified number of characters, including trailing
spaces.

* This is the COBOL representation of the string containing a
* value that we want to pass back to the client using COAPUT
* via an unbounded pointer string. */

01 NOTES PICTURE X(160).
01 NOTES-LEN PICTURE 9(10) BINARY

VALUE 160.

* This is the unbounded pointer string

01 CUST-NOTES USAGE IS POINTER.

* This STRSET call creates an unbounded string called CUST-NOTES
* to which it copies NOTES-LEN characters from character string
* NOTES

CALL "STRSET" USING CUST-NOTES
NOTES-LEN
NOTES.
185

CHAPTER 6 | IDL-to-COBOL Mapping
Mapping for Wide String Types

Overview This section describes how wide string types are mapped to COBOL.

IDL-to-COBOL mapping
for wide strings

The mapping for the wstring type is similar to the mapping for strings, but
it requires DBCS support from the IBM COBOL compiler for OS/390 & VM.
The current IBM COBOL compiler for OS/390 & VM does have DBCS
support.

A PICTURE G (instead of a PICTURE X) data item represents the COBOL data
item. Instead of calling STRGET and STRSET to access unbounded strings, the
auxiliary functions WSTRGET and WSTRSET should be used. The argument
signatures for these functions are equivalent to their string counterparts.
 186

Mapping for Fixed Type
Mapping for Fixed Type

Overview This section describes how fixed types are mapped to COBOL.

IDL-to-COBOL mapping
for fixed types

The IDL fixed type maps directly to COBOL packed decimal data with the
appropriate number of digits and decimal places (if any).

The fixed-point decimal
data type

The fixed-point decimal data type is used to express in exact terms numeric
values that consist of both an integer and a fixed-length decimal fraction
part. The fixed-point decimal data type has the format <d,s>.

Examples of the fixed-point
decimal data type

You might use it to represent a monetary value in dollars. For example:

typedef fixed<9,2> net_worth; // up to $9,999,999.99, accurate to
// one cent.

typedef fixed<9,4> exchange_rate; // accurate to 1/10000 unit.
typedef fixed<9,0> annual_revenue; // in millions
typedef fixed<3,6> wrong; // this is invalid.

Explanation of the fixed-point
decimal data type

The format of the fixed-point decimal data type can be explained as follows:

1. The first number within the angle brackets is the total number of digits
of precision.

2. The second number is the scale (that is, the position of the decimal
point relative to the digits).

A positive scale represents a fractional quantity with that number of
digits after the decimal point. A zero scale represents an integral value.
A negative scale is allowed, and it denotes a number with units in
positive powers of ten (that is, hundreds, millions, and so on).

Note: All fixed types must be declared in IDL with typedef.
187

CHAPTER 6 | IDL-to-COBOL Mapping
Example of IDL-to-COBOL
mapping for fixed types

The example can be broken down as follows:

1. Consider the following IDL:

2. The preceding IDL maps to the following COBOL:

//IDL
interface example
{

typedef fixed<10,0> type_revenue;
attribute type_revenue revenue;
typedef fixed<6,4> type_precise;
attribute type_precise precise;
type_precise myop(in type_revenue myfixed);
typedef fixed<6,-4> type_millions;
attribute type_millions millions;

};

Example 12:COBOL Example for Fixed Type (Sheet 1 of 2)

* Attribute: revenue
* Mapped name: revenue
* Type: example/type_revenue (read/write)

01 EXAMPLE-REVENUE-ARGS.

03 RESULT PICTURE S9(10)
PACKED-DECIMAL.

* Attribute: precise
* Mapped name: precise
* Type: example/type_precise (read/write)

01 EXAMPLE-PRECISE-ARGS.

03 RESULT PICTURE S9(2)V9(4)
PACKED-DECIMAL.

* Attribute: millions
* Mapped name: millions
* Type: example/type_millions (read/write)

01 EXAMPLE-MILLIONS-ARGS.

03 RESULT PICTURE S9(6)P(4)
PACKED-DECIMAL.

**
* Operation: myop
 188

Mapping for Fixed Type
Limitations in size of COBOL
numeric data items

The IBM COBOL compiler for OS/390 & VM version 2 release 1 limits
numeric data items to a maximum of 18 digits, whereas the IDL fixed type
specifies support for up to 31 digits. If the IDL definition specifies more than
18 digits, the generated data item is restricted to 18 digits. Truncation of
the excess most-significant digits occurs when the item is passed to COBOL.
Passing data from COBOL to a fixed type with greater than 18 digits results
in zero-filling of the excess most-significant digits.

For example, consider the following IDL:

* Mapped name: myop
* Arguments: <in> example/type_revenue myfixed
* Returns: example/type_precise
* User Exceptions: none

01 EXAMPLE-MYOP-ARGS.

03 MYFIXED PICTURE S9(10)
PACKED-DECIMAL.

03 RESULT PICTURE S9(2)V9(4)
PACKED-DECIMAL.

Example 12:COBOL Example for Fixed Type (Sheet 2 of 2)

// IDL
interface example
{

typedef fixed<25,0> lots_of_digits;
attribute lots_of_digits large_value;

typedef fixed<25,8> lots_of_digits_and_prec;
attribute lots_of_digits_and_prec large_value_prec;

};
189

CHAPTER 6 | IDL-to-COBOL Mapping
The preceding IDL cannot be represented in COBOL, because COBOL has a
restricted maximum of 18 digits. The Orbix E2A IDL compiler issues a
warning message and truncates to provide the following mapping:

* Attribute: large_value
* Mapped name: large_value
* Type: example/lots_of_digits (read/write)

01 EXAMPLE-LARGE-VALUE-ARGS.

03 RESULT PICTURE S9(18)
PACKED-DECIMAL.

* Attribute: large_value_prec
* Mapped name: large_value_prec
* Type: example/lots_of_digits_and_prec (read/write)

01 EXAMPLE-LARGE-VALUE-PREC-ARGS.

03 RESULT PICTURE S9(17)V9(1)
PACKED-DECIMAL.
 190

Mapping for Struct Type
Mapping for Struct Type

Overview This section describes how struct types are mapped to COBOL.

IDL-to-COBOL mapping
for struct types

An IDL struct definition maps directly to COBOL group items.

Example of IDL-to-COBOL
mapping for struct types

The example can be broken down as follows:

1. Consider the following IDL:

// IDL
interface example
{

struct a_structure
{

long member1;
short member2;
boolean member3;
string<10> member4;

};
typedef a_structure type_struct;
attribute type_struct astruct;
type_struct myop(in type_struct mystruct);

};
191

CHAPTER 6 | IDL-to-COBOL Mapping
2. The preceding IDL maps to the following COBOL:

**
* Attribute: astruct
* Mapped name: astruct
* Type: example/type_struct (read/write)
**
01 EXAMPLE-ASTRUCT-ARGS.

03 RESULT.
05 MEMBER1 PICTURE S9(10) BINARY.
05 MEMBER2 PICTURE S9(05) BINARY.
05 MEMBER3 PICTURE 9(01) BINARY.

88 MEMBER3-FALSE VALUE 0.
88 MEMBER3-TRUE VALUE 1.

05 MEMBER4 PICTURE X(10).

* Operation: myop
* Mapped name: myop
* Arguments: <in> example/type_struct mystruct
* Returns: example/type_struct
* User Exceptions: none

01 EXAMPLE-MYOP-ARGS.

03 MYSTRUCT.
05 MEMBER1 PICTURE S9(10) BINARY.
05 MEMBER2 PICTURE S9(05) BINARY.
05 MEMBER3 PICTURE 9(01) BINARY.

88 MEMBER3-FALSE VALUE 0.
88 MEMBER3-TRUE VALUE 1.

05 MEMBER4 PICTURE X(10).
03 RESULT.

05 MEMBER1 PICTURE S9(10) BINARY.
05 MEMBER2 PICTURE S9(05) BINARY.
05 MEMBER3 PICTURE 9(01) BINARY.

88 MEMBER3-FALSE VALUE 0.
88 MEMBER3-TRUE VALUE 1.

05 MEMBER4 PICTURE X(10).
 192

Mapping for Union Type
Mapping for Union Type

Overview This section describes how union types are mapped to COBOL.

IDL-to-COBOL mapping
for union types

An IDL union definition maps directly to COBOL group items with the
REDEFINES clause.

Simple example of IDL-to-COBOL
mapping for union types

The example can be broken down as follows:

1. Consider the following IDL:

2. The preceding IDL maps to the following COBOL:

// IDL
interface example
{

union a_union switch(long)
{

case 1: char case_1;
case 3: long case_3;
default: string case_def;

};
typedef a_union type_union;
attribute type_union aunion;
type_union myop(in type_union myunion);

};

Example 13:COBOL Example for Union Type (Sheet 1 of 2)

* Attribute: aunion
* Mapped name: aunion
* Type: example/type_union (read/write)

01 EXAMPLE-AUNION-ARGS.

03 RESULT.
05 D PICTURE S9(10) BINARY.
05 U.

07 FILLER PICTURE X(08)
VALUE LOW-VALUES.

05 FILLER REDEFINES U.
193

CHAPTER 6 | IDL-to-COBOL Mapping
07 CASE-1 PICTURE X(01).
05 FILLER REDEFINES U.

07 CASE-3 PICTURE S9(10) BINARY.
05 FILLER REDEFINES U.

07 CASE-DEF POINTER.

* Operation: myop
* Mapped name: myop
* Arguments: <in> example/type_union myunion
* Returns: example/type_union
* User Exceptions: none

01 EXAMPLE-MYOP-ARGS.

03 MYUNION.
05 D PICTURE S9(10) BINARY.
05 U.

07 FILLER PICTURE X(08)
VALUE LOW-VALUES.

05 FILLER REDEFINES U.
07 CASE-1 PICTURE X(01).

05 FILLER REDEFINES U.
07 CASE-3 PICTURE S9(10) BINARY.

05 FILLER REDEFINES U.
07 CASE-DEF POINTER.

03 RESULT.
05 D PICTURE S9(10) BINARY.
05 U.

07 FILLER PICTURE X(08)
VALUE LOW-VALUES.

05 FILLER REDEFINES U.
07 CASE-1 PICTURE X(01).

05 FILLER REDEFINES U.
07 CASE-3 PICTURE S9(10) BINARY.

05 FILLER REDEFINES U.
07 CASE-DEF POINTER.

Example 13:COBOL Example for Union Type (Sheet 2 of 2)
 194

Mapping for Union Type
COBOL rules for mapped IDL
unions

The following rules apply in COBOL for union types mapped from IDL:

1. The union discriminator in the group item is always referred to as D.

2. The union items are contained within the group item referred to as U.

3. Reference to union elements is made through the EVALUATE statement
to test the discriminator.

Example of COBOL rules for
mapped IDL unions

The following code shows the COBOL rules for mapped IDL unions in effect:

Note: If D and U are used as IDL identifiers, they are treated as reserved
words. This means that they are prefixed with IDL- in the generated
COBOL (for example, the IDL identifier d maps to the COBOL identifier
IDL-D).

EVALUATE D OF RESULT OF EXAMPLE-AUNION-ARGS
WHEN 1
DISPLAY "its a character value = " CASE-1 OF U OF
EXAMPLE-AUNION-ARGS

…
WHEN 3

DISPLAY "its a long value = " CASE-3 OF U OF
EXAMPLE-AUNION-ARGS

WHEN OTHER
DISPLAY "its an unbounded string "

* use strget to retrieve value
END-EVALUATE
195

CHAPTER 6 | IDL-to-COBOL Mapping
More complex example The following provides a more complex example of the IDL-to-COBOL
mapping rules for union types. The example can be broken down as follows:

1. Consider the following IDL:

interface example
{

union a_union switch(long)
{

case 1: char case_1;
case 3: long case_3;
default: string case_def;

};
typedef a_union type_union;

union a_nest_union switch(char)
{

case 'a': char case_a;
case 'b': long case_b;
case 'c': type_union case_c;
default: string case_other;

};
typedef a_nest_union type_nest_union;

attribute type_nest_union anestunion;

};
 196

Mapping for Union Type
2. The preceding IDL maps to the following COBOL:

* Attribute: anestunion
* Mapped name: anestunion
* Type: example/type_nest_union (read/write)

01 EXAMPLE-ANESTUNION-ARGS.

03 RESULT.
05 D PICTURE X(01).
05 U.

07 FILLER PICTURE X(16)
VALUE LOW-VALUES.

05 FILLER REDEFINES U.
07 CASE-A PICTURE X(01).

05 FILLER REDEFINES U.
07 CASE-B PICTURE S9(10) BINARY.
05 FILLER REDEFINES U.

07 CASE-C.
09 D-1 PICTURE S9(10) BINARY.
09 U-1.

11 FILLER PICTURE X(08).
09 FILLER REDEFINES U-1.

11 CASE-1 PICTURE X(01).
09 FILLER REDEFINES U-1.
11 CASE-3 PICTURE S9(10) BINARY.

09 FILLER REDEFINES U-1.
11 CASE-DEF POINTER.

05 FILLER REDEFINES U.
07 CASE-OTHER POINTER.
197

CHAPTER 6 | IDL-to-COBOL Mapping
Mapping for Sequence Types

Overview This section describes how sequence types are mapped to COBOL. First, it
describes the various sequence types that are available.

Bounded and unbounded
sequences

A sequence can be either bounded or unbounded. A bounded sequence is of
a specified size, while an unbounded sequence has no specified size. For
example:

Bounded and unbounded sequences are represented differently in COBOL.
However, regardless of whether a sequence is bounded or unbounded, a
supporting group item is always generated by the Orbix E2A IDL compiler,
to provide some information about the sequence, such as the maximum
length, the length of the sequence in elements, and the contents of the
sequence (in the case of the unbounded sequence). After a sequence is
initialized, the sequence length is equal to zero. The first element of a
sequence is referenced as element 1.

Incoming and outgoing sequences A sequence that is being passed as an incoming parameter to a COBOL
operation is passed as an IN or INOUT value by the COAGET function into the
operation parameter buffer at the start of the operation.

A sequence that is being passed as an outgoing parameter or result from a
COBOL operation is copied as an INOUT, OUT, or RESULT value by the COAPUT
function from the complete operation parameter buffer that is passed to it at
the end of the operation.

// IDL
typedef sequence<long,10> bounded seq
attribute boundedseq seq1
typedef sequence<long> unboundedseq
attribute unboundedseq seq2
 198

Mapping for Sequence Types
IDL-to-COBOL mapping for
bounded sequences

A bounded sequence is represented by a COBOL OCCURS clause and a
supporting group item. For example:

1. Consider the following IDL:

2. The preceding IDL maps to the following COBOL:

// IDL
interface example
{

typedef sequence<long,10> boundedseq;
attribute boundedseq aseq;
boundedseq myop(in boundedseq myseq);

};

Example 14:COBOL Example for Bounded Sequences (Sheet 1 of 2)

* Attribute: aseq
* Mapped name: aseq
* Type: example/boundedseq (read/write)

01 EXAMPLE-ASEQ-ARGS.

03 RESULT-1 OCCURS 10 TIMES.
05 RESULT PICTURE S9(10) BINARY.

03 RESULT-SEQUENCE.
05 SEQUENCE-MAXIMUM PICTURE 9(09) BINARY

VALUE 10.
05 SEQUENCE-LENGTH PICTURE 9(09) BINARY

VALUE 0.
05 SEQUENCE-BUFFER POINTER VALUE NULL.
05 SEQUENCE-TYPE POINTER VALUE NULL.

**
* Operation: myop
* Mapped name: myop
* Arguments: <in> example/boundedseq myseq
* Returns: example/boundedseq
* User Exceptions: none
**
01 EXAMPLE-MYOP-ARGS.

03 MYSEQ-1 OCCURS 10 TIMES.
05 MYSEQ PICTURE S9(10) BINARY.

03 MYSEQ-SEQUENCE.
05 SEQUENCE-MAXIMUM PICTURE 9(09) BINARY

VALUE 10.
05 SEQUENCE-LENGTH PICTURE 9(09) BINARY
199

CHAPTER 6 | IDL-to-COBOL Mapping
All elements of a bounded sequence can be accessed directly. Unpredictable
results can occur if you access a sequence element that is past the current
length but within the maximum number of elements for the sequence.

IDL-to-COBOL mapping for
unbounded sequences

An unbounded sequence cannot map to a COBOL OCCURS clause, because
the size of the sequence is not known. An incoming unbounded sequence is
instead represented as a USAGE IS POINTER data item. A pointer is supplied
that refers to an area of memory containing the sequence, which is not
directly accessible. You must call SEQGET to copy a specified element of the
sequence into an accessible data area. (Refer to �SEQGET� on page 347 for
more details). In this case, a group item is created to hold one element of
the sequence, and a supporting group item is also created.

An outgoing unbounded sequence must be supplied by the implementation
of an operation. This can be either a pointer that was obtained by an IN or
INOUT parameter, or an unbounded sequence constructed by using the
SEQALLOC function.

VALUE 0.
05 SEQUENCE-BUFFER POINTER VALUE NULL.
05 SEQUENCE-TYPE POINTER VALUE NULL.

03 RESULT-1 OCCURS 10 TIMES.
05 RESULT PICTURE S9(10) BINARY.

03 RESULT-SEQUENCE.
05 SEQUENCE-MAXIMUM PICTURE 9(09) BINARY

VALUE 10.
05 SEQUENCE-LENGTH PICTURE 9(09) BINARY

VALUE 0.
05 SEQUENCE-BUFFER POINTER VALUE NULL.
05 SEQUENCE-TYPE POINTER VALUE NULL.

Example 14:COBOL Example for Bounded Sequences (Sheet 2 of 2)
 200

Mapping for Sequence Types
Example of unbounded sequences
mapping

The example can be broken down as follows:

1. Consider the following IDL:

2. The preceding IDL maps to the following COBOL:

// IDL
interface example
{

typedef sequence<long> unboundedseq;
attribute unboundedseq aseq;
unboundedseq myop(in unboundedseq myseq);

};

Example 15:COBOL Example for Unbounded Sequences (Sheet 1 of 2)

* Attribute: aseq
* Mapped name: aseq
* Type: example/unboundedseq (read/write)

01 EXAMPLE-ASEQ-ARGS.

03 RESULT-1.
05 RESULT PICTURE S9(10) BINARY.

03 RESULT-SEQUENCE.
05 SEQUENCE-MAXIMUM PICTURE 9(09) BINARY

VALUE 0.
05 SEQUENCE-LENGTH PICTURE 9(09) BINARY

VALUE 0.
05 SEQUENCE-BUFFER POINTER

VALUE NULL.
05 SEQUENCE-TYPE POINTER

VALUE NULL.
**
* Operation: myop
* Mapped name: myop
* Arguments: <in> example/unboundedseq myseq
* Returns: example/unboundedseq
* User Exceptions: none
**
01 EXAMPLE-MYOP-ARGS.

03 MYSEQ-1.
05 MYSEQ PICTURE S9(10) BINARY.

03 MYSEQ-SEQUENCE.
05 SEQUENCE-MAXIMUM PICTURE 9(09) BINARY

VALUE 0.
201

CHAPTER 6 | IDL-to-COBOL Mapping
Initial storage is assigned to the sequence via SEQALLOC. Elements of an
unbounded sequence are not directly accessible. You can use SEQGET and
SEQSET to access specific elements in the sequence.

05 SEQUENCE-LENGTH PICTURE 9(09) BINARY
VALUE 0.

05 SEQUENCE-BUFFER POINTER
VALUE NULL.

05 SEQUENCE-TYPE POINTER
VALUE NULL.

03 RESULT-1.
05 RESULT PICTURE S9(10) BINARY.

03 RESULT-SEQUENCE.
05 SEQUENCE-MAXIMUM PICTURE 9(09) BINARY

VALUE 0.
05 SEQUENCE-LENGTH PICTURE 9(09) BINARY

VALUE 0.
05 SEQUENCE-BUFFER POINTER

VALUE NULL.
05 SEQUENCE-TYPE POINTER

VALUE NULL.

Example 15:COBOL Example for Unbounded Sequences (Sheet 2 of 2)

Note: For details and examples of how to use the APIs pertaining to
sequences, see �SEQALLOC� on page 335, �SEQDUP� on page 339,
�SEQFREE� on page 344, �SEQGET� on page 347, and �SEQSET� on
page 350.
 202

Mapping for Array Type
Mapping for Array Type

Overview This section describes how arrays are mapped to COBOL.

IDL-to-COBOL mapping
for arrays

An IDL array definition maps directly to the COBOL OCCURS clause. Each
element of the array is directly accessible.

Example of IDL-to-COBOL
203

CHAPTER 6 | IDL-to-COBOL Mapping
2. The preceding IDL maps to the following COBOL:

* Attribute: aarray
* Mapped name: aarray
* Type: example/long_array (read/write)

01 EXAMPLE-AARRAY-ARGS.

03 RESULT-1 OCCURS 2 TIMES.
05 RESULT-2 OCCURS 5 TIMES.

07 RESULT PICTURE S9(10) BINARY.

* Operation: myop
* Mapped name: myop
* Arguments: <in> example/long_array myarray
* Returns: example/long_array
* User Exceptions: none
**
01 EXAMPLE-MYOP-ARGS.

03 MYARRAY-1 OCCURS 2 TIMES.
05 MYARRAY-2 OCCURS 5 TIMES.

07 MYARRAY PICTURE S9(10) BINARY.
03 RESULT-1 OCCURS 2 TIMES.

05 RESULT-2 OCCURS 5 TIMES.
07 RESULT PICTURE S9(10) BINARY.
 204

Mapping for the Any Type
Mapping for the Any Type

Overview This section describes how anys are mapped to COBOL.

IDL-to-COBOL mapping
for anys

The IDL any type maps to a COBOL pointer.

Example of IDL-to-COBOL
mapping for anys

The example can be broken down as follows:

1. Consider the following IDL:

// IDL
interface example
{

typedef any a_any;
attribute a_any aany;
a_any myop(in a_any myany);

};
205

CHAPTER 6 | IDL-to-COBOL Mapping
2. The preceding IDL maps to the following COBOL:

Accessing and changing
contents of an any

The contents of the any type cannot be accessed directly. Instead you can
use the ANYGET function to extract data from an any type, and use the
ANYSET function to insert data into an any type.

Before you call ANYGET, call TYPEGET to retrieve the type of the any into the
level 01 data name that is generated by the Orbix E2A IDL compiler. This
data item is large enough to hold the largest type name defined in the
interface. Similarly, before you call ANYSET, call TYPESET to set the type of
the any.

Refer to �ANYGET� on page 272 and �TYPEGET� on page 369 for details
and an example of how to access the contents of an any. Refer to �ANYSET�
on page 274 and �TYPESET� on page 371 for details and an example of
how to change the contents of an any.

* Attribute: aany
* Mapped name: aany
* Type: example/a_any (read/write)

01 EXAMPLE-AANY-ARGS.

03 RESULT POINTER
VALUE NULL.

* Operation: myop
* Mapped name: myop
* Arguments: <in> example/a_any myany
* Returns: example/a_any
* User Exceptions: none

01 EXAMPLE-MYOP-ARGS.

03 MYANY POINTER
VALUE NULL.

03 RESULT POINTER
VALUE NULL.
 206

Mapping for User Exception Type
Mapping for User Exception Type

Overview This section describes how user exceptions are mapped to COBOL.

IDL-to-COBOL mapping
for exceptions

An IDL exception maps to the following in COBOL:

ï A level 01 group item that contains the definitions for all the user
exceptions defined in the IDL. This group item is defined in COBOL as
follows:

The group item contains the following level 03 items:

♦ An EXCEPTION-ID string that contains a textual description of the
exception.

♦ A D data name that specifies the ordinal number of the current
exception. Within this each user exception has a level 88 data
name generated with its corresponding ordinal value.

♦ A U data name.

♦ A data name for each user exception, which redefines U. Within
each of these data names are level 05 items that are the
COBOL-equivalent user exception definitions for each user
exception, based on the standard IDL-to-COBOL mapping rules.

ï A level 01 data name with an EX-FQN-userexceptionname format,
which has a string literal that uniquely identifies the user exception.

ï A corresponding level 01 data name with an
EX-FQN-userexceptionname-LENGTH format, which has a value
specifying the length of the string literal.

01 idlmembername-USER-EXCEPTIONS.

Note: If D and U are used as IDL identifiers, they are treated as reserved
words. This means that they are prefixed with IDL- in the generated
COBOL. For example, the IDL identifier, d, maps to the COBOL identifier,
IDL-D.
207

CHAPTER 6 | IDL-to-COBOL Mapping
Example of IDL-to-COBOL
mapping for exceptions

The example can be broken down as follows:

1. Consider the following IDL:

interface example {
exception bad {

long value1;
string<32> reason;

};

exception worse {
short value2;
string<16> errorcode;
string<32> reason;

};

void addName(in string name) raises(bad,worse);
};
 208

Mapping for User Exception Type
2. The preceding IDL maps to the following COBOL:

Raising a user exception Use the COAERR function to raise a user exception. Refer to �COAERR� on
page 277 for more details.

* Operation: AddName
* Mapped name: AddName
* Arguments: <in> string name
* Returns: void
* User Exceptions: example/bad
* example/worse

01 EXAMPLE-ADDNAME-ARGS.

03 NAME POINTER
VALUE NULL.

* User exception block

01 EX-EXAMPLE-BAD PICTURE X(19)

VALUE "IDL:example/bad:1.0".
01 EX-EXAMPLE-BAD-LENGTH PICTURE 9(09) BINARY

VALUE 19.
01 EX-EXAMPLE-WORSE PICTURE X(21)

VALUE "IDL:example/worse:1.0".
01 EX-EXAMPLE-WORSE-LENGTH PICTURE 9(09) BINARY

VALUE 21.
01 EXAM16-USER-EXCEPTIONS.

03 EXCEPTION-ID POINTER
VALUE NULL.

03 D PICTURE 9(10) BINARY
VALUE 0.

88 D-NO-USEREXCEPTION VALUE 0.
88 D-EXAMPLE-BAD VALUE 1.
88 D-EXAMPLE-WORSE VALUE 2.

03 U PICTURE X(52)
VALUE LOW-VALUES.

03 EXCEPTION-EXAMPLE-BAD REDEFINES U.
05 VALUE1 PICTURE S9(10) BINARY.
05 REASON PICTURE X(32).

03 EXCEPTION-EXAMPLE-WORSE REDEFINES U.
05 VALUE2 PICTURE S9(05) BINARY.
05 ERRORCODE PICTURE X(16).
05 REASON PICTURE X(32).
209

CHAPTER 6 | IDL-to-COBOL Mapping
Mapping for Typedefs

Overview This section describes how typedefs are mapped to COBOL.

IDL-to-COBOL mapping
for typedefs

COBOL does not support typedefs directly. Any typedefs defined are output
in the expanded form of the identifier that has been defined as a typedef,
which is used in the group levels of the attributes and operations.

Example The example can be broken down as follows:

1. Consider the following IDL:

interface example
{

typedef fixed<8,2> millions;
typedef struct database
{

string<40> full_name;
long date_of_birth;
string<10> nationality;
millions income;

} personnel;

attribute millions dollars;
personnel wages(in string employee_name, in millions

new_salary);
};
 210

Mapping for Typedefs
2. Based on the preceding IDL, the attribute and operation argument
buffer is generated as follows:

* Attribute: dollars
* Mapped name: dollars
* Type: example/millions (read/write)

01 EXAMPLE-DOLLARS-ARGS.

03 RESULT PICTURE S9(6)V9(2) PACKED-DECIMAL.

* Operation: wages
* Mapped name: wages
* Arguments: <in> string emp_name
* <in> example/millions new_salary
* Returns: example/personnel
* User Exceptions: none

01 EXAMPLE-WAGES-ARGS.

03 EMP-NAME POINTER VALUE NULL.
03 NEW-SALARY PICTURE S9(6)V9(2)

PACKED-DECIMAL.
03 RESULT.

05 FULL-NAME PICTURE X(40).
05 DATE-OF-BIRTH PICTURE S9(10) BINARY.
05 NATIONALITY PICTURE X(10).
05 INCOME PICTURE S9(6)V9(2)

PACKED-DECIMAL.
211

CHAPTER 6 | IDL-to-COBOL Mapping
3. Each typedef defined in the IDL is converted to a level 88 item in
COBOL, in the typecode section. The string literal assigned to the level
88 item is the COBOL representation of the typecode for this type.
These typecode key representations are used by COBOL applications
when processing dynamic types such as sequences and anys.

* Typecode section
* This contains CDR encodings of necessary typecodes.
*

01 EXAM24-TYPE PICTURE X(25).
COPY CORBATYP.
88 EXAMPLE-PERSONNEL VALUE

"IDL:example/personnel:1.0".
88 EXAMPLE-MILLIONS VALUE

"IDL:example/millions:1.0".
88 EXAMPLE-DATABASE VALUE

"IDL:example/database:1.0".
01 EXAM24-TYPE-LENGTH PICTURE S9(09) BINARY

VALUE 25.
 212

Mapping for the Object Type
Mapping for the Object Type

Overview This section describes how the object type is mapped to COBOL.

IDL-to-COBOL mapping
for typedefs

The IDL object type maps to a POINTER in COBOL.

Example The example can be broken down as follows:

1. Consider the following IDL:

interface example
{

typedef Object a_object;
attribute a_object aobject;
a_object myop(in a_object myobject);

};
213

CHAPTER 6 | IDL-to-COBOL Mapping
2. The preceding IDL maps to the following COBOL:

* Attribute: aobject
* Mapped name: aobject
* Type: example/a_object (read/write)

01 EXAMPLE-AOBJECT-ARGS.

03 RESULT POINTER VALUE NULL.

* Operation: myop
* Mapped name: myop
* Arguments: <in> example/a_object myobject
* Returns: example/a_object
* User Exceptions: none

01 EXAMPLE-MYOP-ARGS.

03 MY-OBJECT POINTER VALUE NULL.
03 RESULT POINTER VALUE NULL.
 214

Mapping for Constant Types
Mapping for Constant Types

Overview This section describes how constant types are mapped to COBOL.

IDL-to-COBOL mapping
for constants

Each set of const definitions at a different scope are given a unique 01 level
COBOL name, where at root scope this name is
GLOBAl-idlmembername-CONSTS. All other 01 levels are the fuly scoped name
of the module /interface-CONSTS.

You can use the -O argument with the Orbix E2A IDL compiler, to override
the idlmembername with an alternative, user-defined name.

Example The example can be broken down as follows:

1. Consider the following IDL:

// IDL
const unsigned long myulong =1000;
const unsigned short myushort = 10;

module example
{

const string<10> mystring="testing";

interface example1
{

const long mylong =-1000;
const short myshort = -10;

};

interface example2
{

const float myfloat =10.22;
const double mydouble = 11.33;

};
};
215

CHAPTER 6 | IDL-to-COBOL Mapping
2. The preceding IDL maps to the following COBOL:

Example 16:COBOL Example for Constant Types (Sheet 1 of 2)

* Constants in root scope:

01 GLOBAL-EXAM18-CONSTS.

03 MYULONG PICTURE 9(10) BINARY
VALUE 1000.

03 MYUSHORT PICTURE 9(05) BINARY
VALUE 10.

* Constants in example:

01 EXAMPLE-CONSTS.

03 MYSTRING PICTURE X(07)
VALUE "testing".

* Interface:
* example/example1
*
* Mapped name:
* example-example1
*
* Inherits interfaces:
* (none)

* Constants in example/example1:

01 EXAMPLE-EXAMPLE1-CONSTS.

03 MYLONG PICTURE S9(10) BINARY
VALUE -1000.

03 MYSHORT PICTURE S9(05) BINARY
VALUE -10.

* Interface:
* example/example2
*
* Mapped name:
* example-example2
*
* Inherits interfaces:
* (none)

 216

Mapping for Constant Types

* Constants in example/example2:

01 EXAMPLE-EXAMPLE2-CONSTS.

03 MYFLOAT COMPUTATIONAL-1
VALUE 1.022e+01.

03 MYDOUBLE COMPUTATIONAL-2
VALUE 1.133e+01.

Example 16:COBOL Example for Constant Types (Sheet 2 of 2)
217

CHAPTER 6 | IDL-to-COBOL Mapping
Mapping for Operations

Overview This section describes how IDL operations are mapped to COBOL.

IDL-to-COBOL mapping for
operations

An IDL operation maps to a number of statements in COBOL as follows:

1. A 01 group level is created for each operation. This group level is
defined in the idlmembername copybook and contains a list of the
parameters and the return type of the operation. If the parameters or
the return type are of a dynamic type (for example, sequences,
unbounded strings, or anys), no storage is assigned to them. The 01
group level is always suffixed by -ARGS (that is,
FQN-operationname-ARGS).

2. A 01 level is created for each interface, with a PICTURE clause that
contains the longest interface name of the interface operation(s)
contained in the idlmembername copybook. The value of the PICTURE
clause corresponds to the largest operation name length plus one, for
example:

The extra space is added because the operation name must be
terminated by a space when it is passed to the COBOL runtime by
ORBEXEC.

A level 88 item is also created as follows for each operation, with a
value clause that contains the string literal representing the operation
name:

A level 01 item is also created as follows, which defines the length of
the maximum string representation of the interface operation:

01 FQN-OPERATION PICTURE X(maxoperationnamestring+1)

88 FQN-operationname VALUE "operation-name-string".

01 FQN-OPERATION-LENGTH PICTURE9(09) BINARY
VALUE maxoperationnamestring+1
 218

Mapping for Operations
3. The preceding identifiers in point 2 are referenced in a select clause
that is generated in the idlmembernameD copybook. This select clause
calls the appropriate operation paragraphs, which are discussed next.

4. The operation procedures are generated in the idlmembernameS source
member when you specify the -Z argument with the Orbix E2A IDL
compiler. For example:

i. Consider the following IDL:

ii. Based on the preceding IDL, the following COBOL is generated in
the idlmembername copybook:

interface example
{

long my_operation1(in long mylong);
short my_operation2(in short myshort);

};

* Operation: my_operation1
* Mapped name: my_operation1
* Arguments: <in> long mylong
* Returns: long
* User Exceptions: none

01 EXAMPLE-MY-OPERATION1-ARGS.

03 MYLONG PICTURE S9(10) BINARY.
03 RESULT PICTURE S9(10) BINARY.

* Operation: my_operation2
* Mapped name: my_operation2
* Arguments: <in> short myshort
* Returns: short
* User Exceptions: none

01 EXAMPLE-MY-OPERATION2-ARGS.

03 MYSHORT PICTURE S9(05) BINARY.
03 RESULT PICTURE S9(05) BINARY.
219

CHAPTER 6 | IDL-to-COBOL Mapping
iii. The following code is also generated in the idlmembername
copybook:

iv. The following code is generated in the idlmembernameD copybook
member:

v. The following is an example of the code in the idlmembernameS
source member:

*
* Operation List section
* This lists the operations and attributes which an
* interface supports
*

01 EXAMPLE-OPERATION PICTURE X(30).

88 EXAMPLE-MY-OPERATION1 VALUE
"my_operation1:IDL:example:1.0".

88 EXAMPLE-MY-OPERATION2 VALUE
"my_operation2:IDL:example:1.0".

01 EXAMPLE-OPERATION-LENGTH PICTURE 9(09) BINARY
VALUE 30.

EVALUATE TRUE
WHEN EXAMPLE-MY-OPERATION1
PERFORM DO-EXAMPLE-MY-OPERATION1
WHEN EXAMPLE-MY-OPERATION2
PERFORM DO-EXAMPLE-MY-OPERATION2

END-EVALUATE

Example 17:Server Mainline Example for Operations (Sheet 1 of 3)

PROCEDURE DIVISION.
ENTRY "DISPATCH".
CALL "COAREQ" USING REQUEST-INFO.
SET WS-COAREQ TO TRUE.
PERFORM CHECK-STATUS.

* Resolve the pointer reference to the interface name which
* is the fully scoped interface name

CALL "STRGET" USING INTERFACE-NAME
WS-INTERFACE-NAME-LENGTH
WS-INTERFACE-NAME.

SET WS-STRGET TO TRUE.
PERFORM CHECK-STATUS.
 220

Mapping for Operations

* Interface(s) :

MOVE SPACES TO EXAMPLE-OPERATION.

* Evaluate Interface(s) :

EVALUATE WS-INTERFACE-NAME
WHEN 'IDL:example:1.0'

* Resolve the pointer reference to the operation information
CALL "STRGET" USING OPERATION-NAME

EXAMPLE-OPERATION-LENGTH
EXAMPLE-OPERATION

SET WS-STRGET TO TRUE
PERFORM CHECK-STATUS
END-EVALUATE.

COPY EXAM21D.
GOBACK.

DO-EXAMPLE-MY-OPERATION1.
CALL "COAGET" USING EXAMPLE-MY-OPERATION1-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

CALL "COAPUT" USING EXAMPLE-MY-OPERATION1-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

DO-EXAMPLE-MY-OPERATION2.
CALL "COAGET" USING EXAMPLE-MY-OPERATION2-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

CALL "COAPUT" USING EXAMPLE-MY-OPERATION2-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

Example 17:Server Mainline Example for Operations (Sheet 2 of 3)
221

CHAPTER 6 | IDL-to-COBOL Mapping

* Check Errors Copybook

COPY CHKERRS.

Example 17:Server Mainline Example for Operations (Sheet 3 of 3)
 222

Mapping for Attributes
Mapping for Attributes

Overview This section describes how IDL attributes are mapped to COBOL.

IDL-to-COBOL mapping for
attributes

IDL attributes are mapped to COBOL as level 88 items with a _GET_ and
SET prefix. Two level 88 items are created for each attribute (that is, one
with a _GET_ prefix, and one with a _SET_ prefix). However, readonly
attributes only map to one level 88 item, with a _GET_ prefix.

Example The example can be broken down as follows:

1. Consider the following IDL:

2. The preceding IDL maps to the following COBOL:

interface example
{

readonly attribute long mylong;
attribute short myshort;

};

01 EXAMPLE-OPERATION PICTURE X(29).
88 EXAMPLE-GET-MYLONG VALUE

"_get_mylong:IDL:example:1.0".
88 EXAMPLE-GET-MYSHORT VALUE

"_get_myshort:IDL:example:1.0".
88 EXAMPLE-SET-MYSHORT VALUE

"_set_myshort:IDL:example:1.0".
01 EXAMPLE-OPERATION-LENGTH PICTURE 9(09) BINARY

VALUE 29.
223

CHAPTER 6 | IDL-to-COBOL Mapping
Mapping for Operations with a Void Return
Type and No Parameters

Overview This section describes how IDL operations that have a void return type and
no parameters are mapped to COBOL.

Example The example can be broken down as follows:

1. Consider the following IDL:

2. The preceding IDL maps to the following COBOL:

interface example
{

void myoperation();
};

Example 18:COBOL Example for Void Return Type (Sheet 1 of 2)

* Interface:
* example
*
* Mapped name:
* example
*
* Inherits interfaces:
* (none)

* Operation: myoperation
* Mapped name: myoperation
* Arguments: None
* Returns: void
* User Exceptions: none

01 EXAMPLE-MYOPERATION-ARGS.

03 FILLER PICTURE X(01).

COPY EXAM19X.

 224

Mapping for Operations with a Void Return Type and No Parameters

*
* Operation List section
* This lists the operations and attributes which an
* interface supports
*
**

01 EXAMPLE-OPERATION PICTURE X(28).
88 EXAMPLE-MYOPERATION VALUE

"myoperation:IDL:example:1.0".
01 EXAMPLE-OPERATION-LENGTH PICTURE 9(09)

BINARY VALUE 28.

Note: The filler is included for completeness, to allow the application to
compile, but the filler is never actually referenced. The other code
segments are generated as expected.

Example 18:COBOL Example for Void Return Type (Sheet 2 of 2)
225

CHAPTER 6 | IDL-to-COBOL Mapping
Mapping for Inherited Interfaces

Overview This section describes how inherited interfaces are mapped to COBOL.

IDL-to-COBOL mapping for
inherited interfaces

An IDL interface that inherits from other interfaces includes all the attributes
and operations of those other interfaces. In the header of the interface being
processed, the Orbix E2A IDL compiler generates an extra comment that
contains a list of all the inherited interfaces.

Example The example can be broken down as follows:

1. Consider the following IDL:

2. The preceding IDL maps to the following COBOL in the idlmembername
copybook:

interface Account
{

attribute short mybaseshort;
void mybasefunc(in long mybaselong);

};

interface SavingAccount : Account
{

attribute short myshort;
void myfunc(in long mylong);

};

Example 19: idlmembernameX Copybook Example (Sheet 1 of 4)

* Interface:
* Account
*
* Mapped name:
* Account
*
* Inherits interfaces:
* (none)

 226

Mapping for Inherited Interfaces

* Attribute: mybaseshort
* Mapped name: mybaseshort
* Type: short (read/write)

01 ACCOUNT-MYBASESHORT-ARGS.

03 RESULT PICTURE S9(05)
BINARY.

* Operation: mybasefunc
* Mapped name: mybasefunc
* Arguments: <in> long mybaselong
* Returns: void
* User Exceptions: none

01 ACCOUNT-MYBASEFUNC-ARGS.

03 MYBASELONG PICTURE S9(10)
BINARY.

* Interface:
* SavingAccount
*
* Mapped name:
* SavingAccount
*
* Inherits interfaces:
* Account

* Attribute: myshort
* Mapped name: myshort
* Type: short (read/write)

01 SAVINGACCOUNT-MYSHORT-ARGS.

03 RESULT PICTURE S9(05)
BINARY.

* Attribute: mybaseshort
* Mapped name: mybaseshort
* Type: short (read/write)

01 SAVINGACCOUNT-MYBASESHORT-ARGS.

03 RESULT PICTURE S9(05)
BINARY.

Example 19: idlmembernameX Copybook Example (Sheet 2 of 4)
227

CHAPTER 6 | IDL-to-COBOL Mapping

* Operation: myfunc
* Mapped name: myfunc
* Arguments: <in> long mylong
* Returns: void
* User Exceptions: none

01 SAVINGACCOUNT-MYFUNC-ARGS.

03 MYLONG PICTURE S9(10)
BINARY.

* Operation: mybasefunc
* Mapped name: mybasefunc
* Arguments: <in> long mybaselong
* Returns: void
* User Exceptions: none

01 SAVINGACCOUNT-MYBASEFUNC-ARGS.

03 MYBASELONG PICTURE S9(10)
BINARY.

*
* Operation List section
* This lists the operations and attributes which an
* interface supports
*

01 ACCOUNT-OPERATION PICTURE X(33).

88 ACCOUNT-GET-MYBASESHORT VALUE
"_get_mybaseshort:IDL:Account:1.0".

88 ACCOUNT-SET-MYBASESHORT VALUE
"_set_mybaseshort:IDL:Account:1.0".

88 ACCOUNT-MYBASEFUNC VALUE
"mybasefunc:IDL:Account:1.0".

01 ACCOUNT-OPERATION-LENGTH PICTURE 9(09)
BINARY VALUE 33.

01 SAVINGACCOUNT-OPERATION PICTURE X(39).
88 SAVINGACCOUNT-GET-MYSHORT VALUE

"_get_myshort:IDL:SavingAccount:1.0".
88 SAVINGACCOUNT-SET-MYSHORT VALUE

"_set_myshort:IDL:SavingAccount:1.0".
88 SAVINGACCOUNT-MYFUNC VALUE

"myfunc:IDL:SavingAccount:1.0".
88 SAVINGACCOUNT-GET-MYBASESHORT VALUE

"_get_mybaseshort:IDL:SavingAccount:1.0".

Example 19: idlmembernameX Copybook Example (Sheet 3 of 4)
 228

Mapping for Inherited Interfaces
3. The following code is generated in the idlmembernameD copybook:

88 SAVINGACCOUNT-SET-MYBASESHORT VALUE
"_set_mybaseshort:IDL:SavingAccount:1.0".

88 SAVINGACCOUNT-MYBASEFUNC VALUE
"mybasefunc:IDL:SavingAccount:1.0".

01 SAVINGACCOUNT-OPERATION-LENGTH PICTURE 9(09)
BINARY VALUE 39.

Example 19: idlmembernameX Copybook Example (Sheet 4 of 4)

EVALUATE TRUE
WHEN ACCOUNT-GET-MYBASESHORT

PERFORM DO-ACCOUNT-GET-MYBASESHORT
WHEN ACCOUNT-SET-MYBASESHORT

PERFORM DO-ACCOUNT-SET-MYBASESHORT
WHEN ACCOUNT-MYBASEFUNC

PERFORM DO-ACCOUNT-MYBASEFUNC
WHEN SAVINGACCOUNT-GET-MYSHORT

PERFORM DO-SAVINGACCOUNT-GET-MYSHORT
WHEN SAVINGACCOUNT-SET-MYSHORT

PERFORM DO-SAVINGACCOUNT-SET-MYSHORT
WHEN SAVINGACCOUNT-MYFUNC

PERFORM DO-SAVINGACCOUNT-MYFUNC
WHEN SAVINGACCOUNT-GET-MYBASESHORT

PERFORM DO-SAVINGACCOUNT-GET-MYBA-6FF2
WHEN SAVINGACCOUNT-SET-MYBASESHORT

PERFORM DO-SAVINGACCOUNT-SET-MYBA-AE11
WHEN SAVINGACCOUNT-MYBASEFUNC

PERFORM DO-SAVINGACCOUNT-MYBASEFUNC
END-EVALUATE
229

CHAPTER 6 | IDL-to-COBOL Mapping
4. The following is an example of the code in the idlmembernameS server
implementation program:

Example 20:Server Mainline Example (Sheet 1 of 3)

* Interface(s) :

MOVE SPACES TO ACCOUNT-OPERATION.
MOVE SPACES TO SAVINGACCOUNT-OPERATION.

* Evaluate Interface(s) :

EVALUATE WS-INTERFACE-NAME
WHEN 'IDL:Account:1.0'

* Resolve the pointer reference to the operation information
CALL "STRGET" USING OPERATION-NAME

ACCOUNT-OPERATION-LENGTH
ACCOUNT-OPERATION

SET WS-STRGET TO TRUE
PERFORM CHECK-STATUS
WHEN 'IDL:SavingAccount:1.0'

* Resolve the pointer reference to the operation information
CALL "STRGET" USING OPERATION-NAME

SAVINGACCOUNT-OPERATION-LENGTH
SAVINGACCOUNT-OPERATION

SET WS-STRGET TO TRUE
PERFORM CHECK-STATUS
END-EVALUATE.

COPY EXAM20D.
GOBACK.

DO-ACCOUNT-GET-MYBASESHORT.
CALL "COAGET" USING ACCOUNT-MYBASESHORT-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

CALL "COAPUT" USING ACCOUNT-MYBASESHORT-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.
 230

Mapping for Inherited Interfaces
DO-ACCOUNT-SET-MYBASESHORT.
CALL "COAGET" USING ACCOUNT-MYBASESHORT-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

CALL "COAPUT" USING ACCOUNT-MYBASESHORT-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

DO-ACCOUNT-MYBASEFUNC.
CALL "COAGET" USING ACCOUNT-MYBASEFUNC-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

CALL "COAPUT" USING ACCOUNT-MYBASEFUNC-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

DO-SAVINGACCOUNT-GET-MYSHORT.
CALL "COAGET" USING SAVINGACCOUNT-MYSHORT-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

CALL "COAPUT" USING SAVINGACCOUNT-MYSHORT-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

DO-SAVINGACCOUNT-SET-MYSHORT.
CALL "COAGET" USING SAVINGACCOUNT-MYSHORT-ARGS.

SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

CALL "COAPUT" USING SAVINGACCOUNT-MYSHORT-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

DO-SAVINGACCOUNT-MYFUNC.
CALL "COAGET" USING SAVINGACCOUNT-MYFUNC-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

Example 20:Server Mainline Example (Sheet 2 of 3)
231

CHAPTER 6 | IDL-to-COBOL Mapping
CALL "COAPUT" USING SAVINGACCOUNT-MYFUNC-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

DO-SAVINGACCOUNT-GET-MYBA-6FF2.
CALL "COAGET" USING SAVINGACCOUNT-MYBASESHORT-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

CALL "COAPUT" USING SAVINGACCOUNT-MYBASESHORT-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

DO-SAVINGACCOUNT-SET-MYBA-AE11.
CALL "COAGET" USING SAVINGACCOUNT-MYBASESHORT-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

CALL "COAPUT" USING SAVINGACCOUNT-MYBASESHORT-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

DO-SAVINGACCOUNT-MYBASEFUNC.
CALL "COAGET" USING SAVINGACCOUNT-MYBASEFUNC-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

CALL "COAPUT" USING SAVINGACCOUNT-MYBASEFUNC-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

* Check Errors Copybook

COPY CHKERRS.

Example 20:Server Mainline Example (Sheet 3 of 3)
 232

Mapping for Multiple Interfaces
Mapping for Multiple Interfaces

Overview This section describes how multiple interfaces are mapped to COBOL.

Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the following code is generated in the
idlmembernameS member:

interface example1
{

readonly attribute long mylong;
attribute short myshort;

};

interface example2
{

readonly attribute long mylong;
attribute short myshort;

};

Example 21:Server Implementation Example (Sheet 1 of 3)

ENTRY "DISPATCH".
CALL "COAREQ" USING REQUEST-INFO.
SET WS-COAREQ TO TRUE.
PERFORM CHECK-STATUS.

* Resolve the pointer reference to the interface name which
* is the fully scoped interface name

CALL "STRGET" USING INTERFACE-NAME
WS-INTERFACE-NAME-LENGTH
WS-INTERFACE-NAME.

SET WS-STRGET TO TRUE.
PERFORM CHECK-STATUS.

* Interface(s) :

MOVE SPACES TO EXAMPLE1-OPERATION.
MOVE SPACES TO EXAMPLE2-OPERATION.
233

CHAPTER 6 | IDL-to-COBOL Mapping

* Evaluate Interface(s) :

EVALUATE WS-INTERFACE-NAME
WHEN 'IDL:example1:1.0'

* Resolve the pointer reference to the operation information
CALL "STRGET" USING OPERATION-NAME

EXAMPLE1-OPERATION-LENGTH
EXAMPLE1-OPERATION

SET WS-STRGET TO TRUE
PERFORM CHECK-STATUS
WHEN 'IDL:example2:1.0'

* Resolve the pointer reference to the operation information
CALL "STRGET" USING OPERATION-NAME

EXAMPLE2-OPERATION-LENGTH
EXAMPLE2-OPERATION

SET WS-STRGET TO TRUE
PERFORM CHECK-STATUS
END-EVALUATE.

COPY EXAM23D.
GOBACK.

DO-EXAMPLE1-GET-MYLONG.
CALL "COAGET" USING EXAMPLE1-MYLONG-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

CALL "COAPUT" USING EXAMPLE1-MYLONG-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

DO-EXAMPLE1-GET-MYSHORT.
CALL "COAGET" USING EXAMPLE1-MYSHORT-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

CALL "COAPUT" USING EXAMPLE1-MYSHORT-ARGS.
SET WS-COAPUT TO TRUE.

Example 21:Server Implementation Example (Sheet 2 of 3)
 234

Mapping for Multiple Interfaces
PERFORM CHECK-STATUS.
DO-EXAMPLE1-SET-MYSHORT.

CALL "COAGET" USING EXAMPLE1-MYSHORT-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

CALL "COAPUT" USING EXAMPLE1-MYSHORT-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

DO-EXAMPLE2-GET-MYLONG.
CALL "COAGET" USING EXAMPLE2-MYLONG-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

CALL "COAPUT" USING EXAMPLE2-MYLONG-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

DO-EXAMPLE2-GET-MYSHORT.
CALL "COAGET" USING EXAMPLE2-MYSHORT-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

CALL "COAPUT" USING EXAMPLE2-MYSHORT-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

DO-EXAMPLE2-SET-MYSHORT.
CALL "COAGET" USING EXAMPLE2-MYSHORT-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

CALL "COAPUT" USING EXAMPLE2-MYSHORT-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

* Check Errors Copybook

COPY CHKERRS.

Example 21:Server Implementation Example (Sheet 3 of 3)
235

CHAPTER 6 | IDL-to-COBOL Mapping
 236

CHAPTER 7

Orbix E2A IDL
Compiler
This chapter describes the Orbix E2A IDL compiler in terms of
the JCL used to run it, the COBOL members that it creates,
the arguments that you can use with it, and the configuration
settings that it uses.

In this chapter This chapter discusses the following topics:

Running the Orbix E2A IDL Compiler page 238

Generated COBOL Members page 240

Orbix E2A IDL Compiler Arguments page 242

Configuration Member Settings page 257

Note: The supplied demonstrations include examples of JCL that can be
used to run the Orbix E2A IDL compiler. You can modify the
demonstration JCL as appropriate, to suit your applications. Any
occurrences of orbixhlq in this chapter are meant to represent your
installation�s high-level qualifier.
237

CHAPTER 7 |
Running the Orbix E2A IDL Compiler

The Orbix E2A IDL compiler You can use the Orbix E2A IDL compiler to generate COBOL source and
copybooks from IDL definitions.

Orbix E2A IDL compiler
configuration

The Orbix E2A IDL compiler uses the Orbix E2A configuration member for
its settings. The JCL that runs the compiler uses the IDL member in the
orbixhlq.CONFIG configuration PDS.

Running the Orbix E2A IDL
compiler

For the purposes of this example, the COBOL source is generated in the first
step of the following job (that is, the JCL supplied with the simple server
demonstration):

Example of the SIMPLIDL JCL The following is the supplied JCL to run the Orbix E2A IDL compiler for the
simple demonstration:

orbixhlq.DEMOS.COBOL.BUILD.JCL(SIMPLIDL)

//SIMPLIDL JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// REGION=0M,
// TIME=1440,
// NOTIFY=&SYSUID,
// COND=(4,LT)
//*---
//* Orbix E2A - Generate the COBOL copybooks for the Simple
//* Client
//*---
// JCLLIB ORDER=(orbixhlq..PROCS)
// INCLUDE MEMBER=(ORXVARS)
//*
//IDLCBL EXEC ORXIDL,
// SOURCE=SIMPLE,
// IDL=&ORBIX..DEMOS.IDL,
// COPYLIB=&ORBIX..DEMOS.COBOL.COPYLIB,
// IMPL=&ORBIX..DEMOS.COBOL.SRC,
// IDLPARM='-cobol'
 238

The preceding JCL generates COBOL copybooks from an IDL member called
SIMPLE (see the SOURCE=SIMPLE line). This JCL does not specify any
compiler arguments (see the IDLPARM line); therefore, it cannot generate any
COBOL source code members, which can only be generated if you specify
the -S and -Z arguments. See �Specifying the Compiler Arguments� on
page 243 for details of how to do this.

Description of the JCL The settings and data definitions contained in the preceding JCL can be
explained as follows:

ORBIX The high-level qualifier for the Orbix E2A installation, which is set
in orbixhlq.PROCS(ORXVARS).

SOURCE The IDL member to be compiled.

IDL The PDS for the IDL member.

COPYLIB The PDS for the COBOL copybooks generated by the Orbix E2A
IDL compiler.

IMPL The PDS for the COBOL source code members generated by the
Orbix E2A IDL compiler.

IDLPARM The plug-in to the Orbix E2A IDL compiler to be used (in the
preceding example, it is the COBOL plug-in), and any arguments
to be passed to it (in the preceding example, no arguments are
specified). See �Specifying the Compiler Arguments� on page 243
for details of how to specify the Orbix E2A IDL compiler
arguments as parameters to it.
239

CHAPTER 7 |
Generated COBOL Members

Overview This section describes the various COBOL source code and copybook
members that the Orbix E2A IDL compiler generates.

Generated members Table 19 provides an overview and description of the COBOL members that
the Orbix E2A IDL compiler generates, based on the IDL member name.

Table 19: COBOL Members Generated by the Orbix E2A IDL Compiler

Member Name Member Type Compiler Argument
Used to Generate

Description

idlmembernameS Source code -Z This is server implementation source code
member. It contains stub paragraphs for all the
callable operations. It is only generated if you
specify the -Z argument.

idlmembernameSV Source code -S This is the server mainline source code
member. It is only generated if you specify the
-S argument.

idlmembername Copybook Generated by
default

This copybook contains data definitions that are
used for working with operation parameters and
return values for each interface defined in the
IDL member.

idlmembernameX Copybook Generated by
default

This copybook contains data definitions that are
used by the Orbix COBOL runtime to support
the interfaces defined in the IDL member. This
copybook is automatically included in the
idlmembername copybook.

idlmembernameD Copybook Generated by
default

This copybook contains procedural code for
performing the correct paragraph for the
request operation. This copybook is
automatically included in the idlmembernameS
source code member.
 240

Member name restrictions If the IDL member name exceeds six characters, the Orbix E2A IDL compiler
uses only the first six characters of the IDL member name when generating
the source and copybook member names. This allows space for appending
the two-character SV suffix to the name for the server mainline code
member, while allowing it to adhere to the eight-character maximum size
limit for OS/390 member names. In such cases, each of the other generated
member names is also based on only the first six characters of the IDL
member name, and is appended with its own suffix, as appropriate.
241

CHAPTER 7 |
Orbix E2A IDL Compiler Arguments

Overview This section describes the various arguments that you can specify as
parameters to the Orbix E2A IDL compiler.

Summary of the arguments The Orbix E2A IDL compiler arguments can be summarized as follows:

All these arguments are optional. This means that they do not have to be
specified as parameters to the compiler.

In this section This section discusses the following topics:

-Q Indicate whether single or double quotes are to be used for string
literals in COBOL copybooks.

-M Set up an alternative mapping scheme for data names.

-Z Generate server implementation source code.

-S Generate server mainline source code.

-T Indicate whether server code is for batch, IMS, or CICS.

-O Override default copybook names with a different name.

Specifying the Compiler Arguments page 243

-M Argument page 244

-O Argument page 250

-Q Argument page 252

-S Argument page 253

-T Argument page 254

-Z Argument page 256
 242

Specifying the Compiler Arguments

Overview This section describes how to specify the available arguments as parameters
to the Orbix E2A IDL compiler.

The IDLPARM DD name To denote the arguments that you want to specify as parameters to the
compiler, you can use the DD name, IDLPARM, in the JCL that you use to run
the compiler. See �Running the Orbix E2A IDL Compiler� on page 238 for
an example of the JCL to run the Orbix E2A IDL compiler for the supplied
SIMPLE IDL member.

IDLPARM line format The parameters for the IDLPARM entry in the JCL take the following format:

Each argument must be preceded by a colon followed by a hyphen (that is,
:-) , with no spaces between any characters or any arguments.

// IDLPARM='-cobol[:-M[option][membername]][:-Omembername]
[:-Q[option]][:-S][:-T[option]][:-Z]'

Note: If you set IsDefault=YES in the COBOL section of the
orbixhlq.CONFIG(IDL) configuration member, you do not need to specify
the -cobol switch in the IDLPARM line of the JCL. See �Configuration
Member Settings� on page 257 for more details.
243

CHAPTER 7 |
-M Argument

Description COBOL data names generated by the Orbix E2A IDL compiler are based on
fully qualified interface names by default (that is,
IDLmodulename(s)-IDLinterfacename-IDLvariablename). You can use the
-M argument with the Orbix E2A IDL compiler to define your own alternative
mapping scheme for data names. This is particularly useful if your COBOL
data names are likely to exceed the 30-character restriction imposed by the
COBOL compiler.

IDLMAP DD card To use the -M argument, you must define a DD card for IDLMAP in the JCL
that you use to run the Orbix E2A IDL compiler. This DD card specifies the
PDS for the mapping member generated by the Orbix E2A IDL compiler. For
example, you might define the DD card as follows in the JCL:

You can define a DD card for IDLMAP even if you do not specify the -M
argument as a parameter to the Orbix E2A IDL compiler. The DD card is
simply ignored if the -M argument is not specified.

Example of data names
generated by default

The example can be broken down as follows:

1. Consider the following IDL:

//IDLMAP DD DISP=SHR,DSN=HLQ.ASP50.DEMOS.COBOL.MAP

module Banks{
module IrishBanks{

interface SavingsBank{attribute short accountbal;};
interface NationalBank{};
interface DepositBank{};

};
};
 244

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates by
default the data names shown in Table 20 for the specified interfaces:

By using the -M argument, you can replace the fully scoped names shown in
Table 20 with alternative data names.

Steps to generate alternative
names with the -M argument

The steps to generate alternative data name mappings with the -M argument
are:

Step 1óGenerate the mapping
member

First, you must run the Orbix E2A IDL compiler with the -Mcreate
argument, to generate the mapping member, which contains the fully
qualified names and the alternative name mappings. The format of the
command in the IDL compiler JCL is as follows (where X represents the
scope level, and BANK is the name of the mapping member you want to
create):

Table 20: Example of Default Generated Data Names

Interface Name Generated Data Name

SavingsBank Banks-IrishBanks-SavingsBank

NationalBank Banks-IrishBanks-NationalBank

DepositBank Banks-IrishBanks-DepositBank

Step Action

1 Run the Orbix E2A IDL compiler with the -Mcreate argument,
to generate the mapping member, complete with the fully
qualified names and their alternative mappings.

2 Edit (if necessary) the generated mapping member, to change
the alternative name mappings to the names you want to use.

3 Run the Orbix E2A IDL compiler with the -Mprocess argument,
to generate COBOL copybooks with the alternative data names.

IDLPARM='-cobol:-McreateXBANK',
245

CHAPTER 7 |
Explanation of the command in
step 1

The components of the preceding command can be explained as follows
(note that there must be no spaces between these components):

Examples of scoping levels
described in step 1

The level of scoping within the generated alternative name mappings is
determined by whether you specify 0, 1, or 2 with the -Mcreate command.

The example can be broken down as follows:

1. Consider the following IDL:

create This specifies that the -M argument is to create a mapping member.

X This specifies the level of scoping to be involved in the generated
data names in the mapping member. The possible scope levels are:

0 Map fully scoped IDL names to unscoped COBOL names (that
is, to the IDL variable name only).

1 Map fully scoped IDL names to partially scoped COBOL names
(that is, to IDLinterfacename-IDLvariablename). The scope
operator, /, is replaced with a hyphen, -.

2 Map fully scoped IDL names to fully scoped COBOL names (that
is, to IDLmodulename(s)-IDLinterfacename-IDLvariablename).
The scope operator, /, is replaced with a hyphen, -.

BANK This is the name of the mapping member to be created. It can be
up to six characters long. If you specify a name that is greater than
six characters, the name is truncated to the first six characters.

module Banks{
module IrishBanks{

interface SavingsBank{attribute short accountbal;};
interface NationalBank{void deposit

(in long amount);};
};

};
 246

2. Based on the preceding IDL example, a -Mcreate0BANK command
produces the BANK mapping member contents shown in Table 21.

Alternatively, based on the preceding IDL example, a -Mcreate1BANK
command produces the BANK mapping member contents shown in
Table 22.

Table 21: Example of Level-0-Scoped Generated Data Names

Fully Scoped IDL Names Generated Alternative Names

Banks Banks

Banks/IrishBanks IrishBanks

Banks/IrishBanks/SavingsBank SavingsBank

Banks/IrishBanks/SavingsBank/

accountbal

accountbal

Banks/IrishBanks/NationalBank NationalBank

Banks/IrishBanks/NationalBank/

deposit

deposit

Table 22: Example of Level-1-Scoped Generated Data Names

Fully Scoped IDL Names Generated Alternative Names

Banks Banks

Banks/IrishBanks IrishBanks

Banks/IrishBanks/SavingsBank SavingsBank

Banks/IrishBanks/SavingsBank/

accountbal

SavingsBanks-accountbal

Banks/IrishBanks/NationalBank NationalBank

Banks/IrishBanks/NationalBank/

deposit

NationalBank-deposit
247

CHAPTER 7 |
Alternatively, based on the preceding IDL example, a -Mcreate2BANK
command produces the BANK mapping member contents shown in
Table 23.

Step 2óChange the alternative
name mappings

You can manually edit the mapping member to change the alternative
names to the names that you want to use. For example, you might change
the mappings in the BANK mapping member as follows:

Table 23: Example of Level-2-Scoped Generated Data Names

Fully Scoped IDL Names Generated Alternative Names

Banks Banks

Banks/IrishBanks Banks-IrishBanks

Banks/IrishBanks/SavingsBank Banks-IrishBanks-SavingsBank

Banks/IrishBanks/SavingsBank/

accountbal

Banks-IrishBanks-SavingsBanks-

accountbal

Banks/IrishBanks/NationalBank Banks-IrishBanks-NationalBank

Banks/IrishBanks/NationalBank/

deposit

Banks-IrishBanks-NationalBank-

deposit

Fully Scoped IDL Names Modified Names

Banks/IrishBanks IrishBanks

Banks/IrishBanks/SavingsBank MyBank

Banks/IrishBanks/NationalBank MyOtherBank

Banks/IrishBanks/SavingsBank/accountbal Myaccountbalance
 248

Note the following rules:

ï The fully scoped name and the alternative name meant to replace it
must be separated by one space (and one space only).

ï The fully scoped IDL names generated are case sensitive, so that they
match the IDL being processed. If you add new entries to the mapping
member, to cater for additions to the IDL, the names of the new entries
must exactly match the corresponding IDL names in terms of case.

ï If the alternative name exceeds 30 characters, it is abbreviated to 30
characters, subject to the normal COBOL mapping rules for identifiers.

Step 3óGenerate the COBOL
copybooks

When you have changed the alternative mapping names as necessary, run
the Orbix E2A IDL compiler with the -Mprocess argument, to generate your
COBOL copybooks complete with the alternative data names that you have
set up in the specified mapping member.

The following command generates data names for the contents of the
specified IDL member, based on the alternative name mappings in the BANK
mapping member:

When you run the preceding command, your COBOL copybooks are
generated with the alternative data names you want to use, instead of with
the fully qualified data names that the Orbix E2A IDL compiler generates by
default.

IDLPARM='-cobol:-MprocessBANK'
249

CHAPTER 7 |
-O Argument

Description COBOL source and copybook names generated by the Orbix E2A IDL
compiler are based by default on the IDL member name. You can use the -O
argument with the Orbix E2A IDL compiler to map the default generated
member names to an alternative naming scheme, if you wish.

The -O argument is, for example, particularly useful for users who have
migrated from IONA�s Orbix 2.3-based solution for OS/390, and who want
to avoid having to change the COPY statements in their existing application
source code. In this case, they can use the -O argument to automatically
change the generated member names to the alternative names they want to
use.

Example of copybooks generated
by Orbix E2A IDL compiler

The example can be broken down as follows:

1. Consider the following IDL contained in the TEST IDL member:

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following COBOL copybooks, based on the IDL member name:

♦ TEST

♦ TESTX

♦ TESTD

Note: If you are an existing user who has migrated from IONA�s Orbix
2.3-based solution for OS/390, see the Mainframe Migration Guide for
more details.

interface simple
{

void sizeofgrid(in long mysize1, in long
mysize2);

};

interface block
{

void area(in long myarea);
};
 250

Specifying the -O argument The following piece of JCL changes the copybook names from TEST
251

CHAPTER 7 |
-Q Argument

Description The -Q argument indicates whether single or double quotes are to be used
on string literals in COBOL copybooks.

Qualifying parameters The -Q argument must be qualified by either s or d. If you specify -Qs, single
quotes are used. If you specify -Qd, double quotes are used. If you do not
specify the -Q argument, double quotes are used by default.

Specifying the -Q argument The following piece of JCL specifies that single quotes are to be used on
string literals in COBOL copybooks that are generated from the SIMPLE IDL
member:

// SOURCE=SIMPLE,
// …
// IDLPARM='-cobol:-Qs'
 252

-S Argument

Description The -S argument generates the server mainline source code member (that
is, the idlmembernameSV program). This program is not generated by default
by the Orbix E2A IDL compiler. It is only generated if you use the -S
argument, because doing so overwrites any server code that has already
been created based on that IDL member name.

Specifying the -S argument The following piece of JCL creates a server mainline program called
SIMPLESV, based on the SIMPLE IDL member:

WARNING: Only specify the -S argument if you want to generate a new
server mainline source code member or overwrite an existing one.

// SOURCE=SIMPLE
// …
// IDLPARM='-cobol:-S'.
253

CHAPTER 7 |
-T Argument

Description The -T argument allows you to specify whether the server code you want to
generate is for use in batch, IMS, or CICS. The valid options for this
argument are:

Specifying the -T argument for
batch

The following piece of JCL creates a batch COBOL server mainline program
(called SIMPLESV) and a batch COBOL server implementation program
(called SIMPLES), based on the SIMPLE IDL member:

NATIVE Specifying -TNATIVE with -S generates batch server mainline
code. Specifying -TNATIVE with -Z generates batch server
implementation code.

Specifying -TNATIVE is the same as not specifying -T at all.
That is, unless you specify -TIMS,
 254

See �Developing the Server� on page 24 for an example of batch COBOL
server mainline and implementation programs.

Specifying the -T argument for
IMS

The following piece of JCL creates an IMS COBOL server mainline program
(called SIMPLESV) and an IMS COBOL server implementation program
(called SIMPLES), based on the SIMPLE IDL member:

See �Developing the Server� on page 62 for an example of IMS COBOL
server mainline and implementation programs.

Specifying the -T argument for
CICS

The following piece of JCL creates a CICS COBOL server mainline program
(called SIMPLESV) and a CICS COBOL server implementation program (called
SIMPLES), based on the SIMPLE IDL member:

See �Developing the Server� on page 95 for an example of CICS COBOL
server mainline and implementation programs.

Note: Specifying -TNATIVE is the same as not specifying -T at all.

// SOURCE=SIMPLE,
// …
// IDLPARM='-cobol:-S:-Z:-TIMS',

// SOURCE=SIMPLE,
// …
// IDLPARM='-cobol:-S:-Z:-TCICS',
255

CHAPTER 7 |
-Z Argument

Description The -Z argument generates the skeleton server implementation source code
member (that is, the idlmembernameS program). The generated code
contains stub paragraphs for all the callable operations in the defined IDL.
This program is not generated by default. It is only generated if you use the
-Z argument, because doing so overwrites any server implementation code
 256

Configuration Member Settings

Overview This section describes the configuration settings for the Orbix E2A IDL
compiler -cobol plug-in for COBOL source code and copybook generation,
and the -mfa plug-in for IMS adapter mapping member generation.

In this section This section discusses the following topics:

Note: The -mfa plug-in is not relevant for batch application development.

COBOL Configuration Settings page 258

Adapter Mapping Member Configuration Settings page 261
257

CHAPTER 7 |
COBOL Configuration Settings

Overview The orbixhlq.CONFIG(IDL) member contains settings for COBOL, along
with those for C++ and several other languages.

Configuration settings The COBOL configuration is listed under Cobol as follows:

Mandatory settings The first three of the preceding settings are mandatory and must not be
altered. They inform the Orbix E2A IDL compiler how to recognize the
COBOL switch, and what name the DLL plug-in is stored under. The x value
for ShlibMajorVersion represents the version number of the supplied
ShlibName DLL.

User-defined settings All but the first three settings are user-defined and can be changed. The
reason for these user-defined settings is to allow you to change, if you wish,
default configuration values that are set during installation. To enable a
user-defined setting, use the following format.

Cobol
{

Switch = "cobol";
ShlibName = "ORXBCBL";
ShlibMajorVersion = "x";
IsDefault = "NO";
PresetOptions = "";

COBOL files and copybooks extensions
The Default is .cbl, .xxx and .cpy on NT and none for
OS/390.

CobolExtension = "";
ImplementationExtension = "";
CopybookExtension = "";

};

Note: Settings listed with a # are considered to be comments and are not
in effect.

setting_name = "value";
 258

List of available settings Table 24 provides an overview and description of the available configuration
settings.

Table 24: COBOL Configuration Settings (Sheet 1 of 2)

Setting Name Description Default

IsDefault Indicates whether COBOL is the
language that the Orbix E2A
IDL compiler generates by
default from IDL. If this is set to
YES, you do not need to specify
the -cobol switch when
running the compiler.

PresetOptions The arguments that are passed
by default as parameters to the
Orbix E2A IDL compiler.

CobolExtensiona Extension for the server
mainline source code file on
Windows NT.

cbl

ImplementationExtensiona Extension for the server
implementation source code file
on Windows NT. You should
copy this to a file with a .cbl
extension, to avoid overwriting
any subsequent changes if you
run the Orbix E2A IDL compiler
again.

xxx

CopybookExtensiona Extension for COBOL
copybooks on Windows NT.

cpy

MainCopybookSuffix Suffix for the main copybook.

RuntimeCopybookSuffix Suffix for the runtime copybook. X
259

CHAPTER 7 |
The last five settings in Table 24 are not listed by default in
orbixhlq.CONFIG(IDL). If you want to change the generated member
suffixes from the default values shown in Table 24, you must manually
enter the relevant setting name and its corresponding value.

SelectCopybookSuffix Suffix for the select copybook. D

ImplementationSuffix Suffix for the server
implementation source code
member.

S

ServerSuffix Suffix for the server mainline
source code member.

SV

a. This is specific to Windows NT. It is ignored on OS/390.

Table 24: COBOL Configuration Settings (Sheet 2 of 2)

Setting Name Description Default
 260

Adapter Mapping Member Configuration Settings

Overview The -mfa plug-in allows the IDL compiler to generate IMS or CICS adapter
mapping members from IDL. The orbixhlq.CONFIG(IDL) member contains
configuration settings relating to the generation of IMS or CICS adapter
mapping members.

Configuration settings The IMS or CICS adapter mapping member configuration is listed under
MFAMappings as follows:

Mandatory settings The first three of the preceding settings are mandatory and must not be
altered. They inform the Orbix E2A IDL compiler how to recognize the
adapter mapping member switch, and what name the DLL plug-in is stored
under. The x value for ShlibMajorVersion represents the version number of
the supplied ShlibName DLL.

Note: See the IMS Adapter Administratorís Guide or CICS Adapter
Administratorís Guide for more details about adapter mapping members.

MFAMappings
{

Switch = "mfa";
ShlibName = "ORXBMFA";
ShlibMajorVersion = "x";
IsDefault = "NO";
PresetOptions = "";

Mapping file includes extensions
The Default is .map and none for OS/390.
MFAMappingExtension = "";
The default suffix is A.
MFAMappingSuffix = "";
};
261

CHAPTER 7 |
User-defined settings
 262

CHAPTER 8

API Reference
This chapter summarizes the API functions that are defined
for the Orbix E2A COBOL runtime, in pseudo-code. It explains
how to use each function, with an example of how to call it
from COBOL.

In this chapter This chapter discusses the following topics:

API Reference Summary page 264

API Reference Details page 268

Deprecated APIs page 381

Note: All parameters are passed by reference to COBOL APIs.
263

CHAPTER 8 | API Reference
API Reference Summary

Introduction This section provides a summary of the available API functions, in
alphabetic order. See �API Reference Details� on page 268 for more details
of each function.

Summary listing ANYFREE(inout POINTER any-pointer)
// Frees memory allocated to an any.

ANYGET(in POINTER any-pointer,
out buffer any-data-buffer)

// Extracts data out of an any.

ANYSET(inout POINTER any-pointer,
in buffer any-data-buffer)

// Inserts data into an any.

COAERR(in buffer user-exception-buffer)
// Allows a COBOL server to raise a user exception for an
// operation.

COAGET(in buffer operation-buffer)
// Marshals in and inout arguments for an operation on the server
// side from an incoming request.

COAPUT(out buffer operation-buffer)
// Marshals return, out, and inout arguments for an operation on
// the server side from an incoming request.

COAREQ(in buffer request-details)
// Provides current request information

COARUN
// Indicates the server is ready to accept requests.

MEMALLOC(in 9(09) BINARY memory-size,
out POINTER memory-pointer)

// Allocates memory at runtime from the program heap.

MEMFREE(inout POINTER memory-pointer)
// Frees dynamically allocated memory.
 264

API Reference Summary
OBJDUP(in POINTER object-reference,
out POINTER duplicate-obj-ref)

// Duplicates an object reference.

OBJGETID(in POINTER object-reference,
out X(nn) object-id,
in 9(09) BINARY object-id-length)

// Retrieves the object ID from an object reference.

OBJNEW(in X(nn) server-name,
in X(nn) interface-name,
in X(nn) object-id,
out POINTER object-reference)

// Creates a unique object reference.

OBJREL(inout POINTER object-reference)
// Releases an object reference.

OBJRIR(in X(nn) desired-service,
out POINTER object-reference)

// Returns an object reference to an object through which a
// service such as the Naming Service can be used.

OBJTOSTR(in POINTER object-reference,
out POINTER object-string)

// Returns a stringified interoperable object reference (IOR)
// from a valid object reference.

ORBARGS(in X(nn) argument-string,
in 9(09) BINARY argument-string-length,
in X(nn) orb-name,
in 9(09) BINARY orb-name-length)

// Initializes a client or server connection to an ORB.

ORBEXEC(in POINTER object-reference,
in X(nn) operation-name,
inout buffer operation-buffer,
inout buffer user-exception-buffer)

// Invokes an operation on the specified object.

ORBHOST(in 9(09) BINARY hostname-length,
out X(nn) hostname)

// Returns the hostname of the server

ORBREG(in buffer interface-description)
// Describes an IDL interface to the COBOL runtime.
265

CHAPTER 8 | API Reference
ORBSRVR(in X(nn) server-name,
in 9(09) BINARY server-name-length)

// Sets the server name for the current server process.

ORBSTAT(in buffer status-buffer)
// Registers the status information block.

ORBTIME(in 9(04) BINARY timeout-type
in 9(09) BINARY timeout-value)

// Used by clients for setting the call timeout.
// Used by servers for setting the event timeout.

SEQALLOC(in 9(09) BINARY sequence-size,
in X(nn) typecode-key,
in 9(09) BINARY typecode-key-length,
inout buffer sequence-control-data)

// Allocates memory for an unbounded sequence

SEQDUP(in buffer sequence-control-data,
out buffer dupl-seq-control-data)

// Duplicates an unbounded sequence control block.

SEQFREE(inout buffer sequence-control-data)
// Frees the memory allocated to an unbounded sequence.

SEQGET(in buffer sequence-control-data,
in 9(09) BINARY element-number,
out buffer sequence-data)

// Retrieves the specified element from an unbounded sequence.

SEQSET(out buffer sequence-control-data,
in 9(09) BINARY element-number,
in buffer sequence-data)

// Places the specified data into the specified element of an
// unbounded sequence.

STRFREE(in POINTER string-pointer)
// Frees the memory allocated to a bounded string.

STRGET(in POINTER string-pointer,
in 9(09) BINARY string-length,
out X(nn) string)

// Copies the contents of an unbounded string to a bounded string.

STRLEN(in POINTER string-pointer,
out 9(09) BINARY string-length)

// Returns the actual length of an unbounded string.
 266

API Reference Summary
STRSET(out POINTER string-pointer,
in 9(09) BINARY string-length,
in X(nn) string)

// Creates a dynamic string from a PIC X(n) data item

STRSETP(out POINTER string-pointer,
in 9(09) BINARY string-length,
in X(nn) string)

// Creates a dynamic string from a PIC X(n) data item.

STRTOOBJ(in POINTER object-string,
out POINTER object-reference)

// Creates an object reference from an interoperable object
// reference (IOR).

TYPEGET(inout POINTER any-pointer,
in 9(09) BINARY typecode-key-length,
out X(nn) typecode-key)

// Extracts the type name from an any.

TYPESET(inout POINTER any-pointer,
in 9(09) BINARY typecode-key-length,
in X(nn) typecode-key)

// Sets the type name of an any.

WSTRFREE(in POINTER string-pointer)
// Frees the memory allocated to a bounded wide string.

WSTRGET(in POINTER string-pointer,
in 9(09) BINARY string-length,
out G(nn) string)

// Copies the contents of an unbounded wide string to a bounded
// wide string.

WSTRLEN(in POINTER string-pointer,
out 9(09) BINARY string-length)

// Returns the actual length of an unbounded wide string.

WSTRSET(out POINTER string-pointer,
in 9(09) BINARY string-length
in G(nn) string)

// Creates a dynamic wide string from a PIC G(n) data item

WSTRSETP(out POINTER string-pointer,
in 9(09) BINARY string-length,
in G(nn) string)

// Creates a dynamic wide string from a PIC G(n) data item.
267

CHAPTER 8 | API Reference
API Reference Details

Introduction This section provides details of each available API function, in alphabetic
order.

In this section This section discusses the following topics:

ANYFREE page 270

ANYGET page 272

ANYSET page 274

COAERR page 277

COAGET page 281

COAPUT page 286

COAREQ page 292

COARUN page 297

MEMALLOC page 298

MEMFREE page 300

OBJDUP page 301

OBJGETID page 303

OBJNEW page 305

OBJREL page 308

OBJRIR page 310

OBJTOSTR page 312

ORBARGS page 314

ORBEXEC page 317
 268

API Reference Details
ORBHOST page 323

ORBREG page 325

ORBSRVR page 328

ORBSTAT page 329

ORBTIME page 333

SEQALLOC page 335

SEQDUP page 339

SEQFREE page 344

SEQGET page 347

SEQSET page 350

STRFREE page 355

STRGET page 357

STRLEN page 360

STRSET page 362

STRSETP page 365

STRTOOBJ page 367

TYPEGET page 369

TYPESET page 371

WSTRFREE page 373

WSTRGET page 374

WSTRLEN page 375

WSTRSET page 376

WSTRSETP page 377

CHECK-STATUS page 378
269

CHAPTER 8 | API Reference
ANYFREE

Synopsis ANYFREE(inout POINTER any-pointer);
// Frees memory allocated to an any.

Usage Common to clients and servers.

Description The ANYFREE function releases the memory held by an any type that is being
used to hold a value and its corresponding typecode. Do not try to use the
any type after freeing its memory, because doing so might result in a
runtime error.

When you call the ANYSET function, it allocates memory to store the actual
value of the any. When you call the TYPESET function, it allocates memory to
store the typecode associated with the value to be marshalled. When you
subsequently call ANYFREE, it releases the memory that has been allocated
via ANYSET and TYPESET.

Parameters The parameter for ANYFREE can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

any-pointer This is an inout parameter that is a pointer to the
address in memory where the any is stored.

//IDL
interface sample {

attribute any myany;
};
 270

API Reference Details
2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

3. The following is an example of how to use ANYFREE in your client or
server program:

See also ï �ANYSET� on page 274.

ï �TYPESET� on page 371.

ï �The any Type and Memory Management� on page 397.

01 SAMPLE-MYANY-ARGS.
03 RESULT POINTER

VALUE NULL.

…
PROCEDURE DIVISION.

CALL "ANYFREE" USING RESULT OF SAMPLE-MYANY-ARGS.
…

271

CHAPTER 8 | API Reference
ANYGET

Synopsis ANYGET(in POINTER any-pointer,
out buffer any-data-buffer)

// Extracts data out of an any.

Usage Common to clients and servers.

Description The ANYGET function provides access to the buffer value that is contained in
an any. You should check to see what type of data is contained in the any,
and then ensure you supply a data buffer that is large enough to receive its
contents. Before you call ANYGET you can use TYPEGET to extract the type of
the data contained in the any.

Parameters The parameters for ANYGET can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

any-pointer This is an inout parameter that is a pointer to the
address in memory where the any is stored.

any-data-buffer This is an out parameter that can be of any valid COBOL
type. It is used to store the value extracted from the any.

interface sample {
attribute any myany;

};
 272

API Reference Details
2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

3. The following is an example of how to use ANYSET in a client or server
program:

See also �ANYSET� on page 274.

01 SAMPLE-MYANY-ARGS.
03 RESULT POINTER

VALUE NULL.
…
01 EXAMPLE-TYPE PICTURE X(15).

COPY CORBATYP.
88 SAMPLE VALUE "IDL:sample:1.0".

01 EXAMPLE-TYPE-LENGTH PICTURE S9(09) BINARY
VALUE 22.

WORKING-STORAGE SECTION.
01 WS-DATA PIC S9(10) VALUE 0.

CALL "TYPEGET" USING RESULT OF SAMPLE-MYANY-ARGS
EXAMPLE-TYPE-LENGTH
EXAMPLE-TYPE.

SET WS-TYPEGET TO TRUE.
PERFORM CHECK-STATUS.
* validate typecode
EVALUATE TRUE

WHEN CORBA-TYPE-LONG
* retrieve the ANY CORBA::Short value

CALL "ANYGET" USING RESULT OF SAMPLE-MYANY-ARGS
WS-DATA

SET WS-ANYGET TO TRUE
PERFORM CHECK-STATUS
DISPLAY "ANY value equals " WS-DATA.

WHEN OTHER
DISPLAY "Wrong typecode received, expected a LONG

typecode"
END-EVALUTE.
273

CHAPTER 8 | API Reference
ANYSET

Synopsis ANYSET(inout POINTER any-pointer,
in buffer any-data-buffer)

// Inserts data into an any.

Usage Common to clients and servers.

Description The ANYSET function copies the supplied data, which is placed in the data
buffer by the application, into the any. ANYSET allocates memory that is
required to store the value of the any. You must call TYPESET before calling
ANYSET, to set the typecode of the any. Ensure that this typecode matches
the type of the data being copied to the any.

Parameters The parameters for ANYSET can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

any-pointer This is an inout parameter that is a pointer to the
address in memory where the any is stored.

any-data-buffer This is an in parameter that can be of any valid COBOL
type. It contains the value to be copied to the any.

interface sample {
attribute any myany;

};
 274

API Reference Details
2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

3. The following is an example of how to use ANYSET in a client or server
program:

Exceptions A CORBA::BAD_INV_ORDER::TYPESET_NOT_CALLED exception is raised if the
typecode of the any has not been set via the TYPESET function.

01 SAMPLE-MYANY-ARGS.
03 RESULT POINTER

VALUE NULL.
…
01 EXAMPLE-TYPE PICTURE X(15).

COPY CORBATYP.
88 SAMPLE VALUE "IDL:sample:1.0".

01 EXAMPLE-TYPE-LENGTH PICTURE S9(09) BINARY
VALUE 22.

WORKING-STORAGE SECTION.
01 WS-DATA PIC S9(10) VALUE 100.

PROCEDURE DIVISION.
…
* Set the ANY typecode to be a CORBA::Long
SET CORBA-TYPE-LONG TO TRUE.
CALL "TYPESET" USING RESULT OF

SAMPLE-MYANY-ARGS
EXAMPLE-TYPE-LENGTH
EXAMPLE-TYPE.

SET WS-TYPESET TO TRUE.
PERFORM CHECK-STATUS.

* Set the ANY value to 100
CALL "ANYSET" USING RESULT OF SAMPLE-MYANY-ARGS

WS-DATA.
SET WS-TYPESET TO TRUE.
PERFORM CHECK-STATUS.
275

CHAPTER 8 | API Reference
See also ï �ANYGET� on page 272.

ï �TYPESET� on page 371.

ï �The any Type and Memory Management� on page 397.
 276

API Reference Details
COAERR

Synopsis COAERR(in buffer user-exception-buffer)
// Allows a COBOL server to raise a user exception for an
// operation.

Usage Server-specific.

Description The COAERR function allows a COBOL server to raise a user exception for the
operation that supports the exception(s), which can then be picked up on
the client side via the user exception buffer that is passed to ORBEXEC for the
relevant operation. To raise a user exception, the server program must set
the EXCEPTION-ID, the D discriminator, and the appropriate exception buffer.

The server calls COAERR instead of COAPUT in this instance, and this informs
the client that a user exception has been raised. Refer to the �Memory
Handling� on page 383 for more details. Calling COAERR does not terminate
the server program.

The client can determine if a user exception has been raised, by testing to
see whether the EXCEPTION-ID of the operation�s user-exception-buffer
parameter passed to ORBEXEC is equal to zero after the call. Refer to
�ORBEXEC� on page 317 for an example of how a COBOL client determines
if a user exception has been raised.

Parameters The parameter for COAERR can be described as follows:

user-exception-bufferThis is an in parameter that contains the COBOL
representation of the user exceptions that the
operation supports, as defined in the
idlmembername copybook generated by the Orbix
E2A IDL compiler. If the IDL operation supports no
user exceptions, a dummy buffer is generated�this
dummy buffer is not populated on the server side,
and it is only used as the fourth (in this case,
dummy) parameter to ORBEXEC.
277

CHAPTER 8 | API Reference
Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

//IDL
interface sample {

typedef string<10> Aboundedstring;
exception MyException { Aboundedstring except_str; };
Aboundedstring myoperation(in Aboundedstring instr,

inout Aboundedstring inoutstr,
out Aboundedstring outstr)
raises (myException);

};

Example 22:The idlmembername Copybook (Sheet 1 of 2)

* Operation: myoperation
* Mapped name: myoperation
* Arguments: <in> sample/Aboundedstring instr
* <inout> sample/Aboundedstring inoutstr
* <out> sample/Aboundedstring outstr
* Returns: sample/Aboundedstring
* User Exceptions: sample/MyException

* operation-buffer
01 SAMPLE-MYOPERATION-ARGS.

03 INSTR PICTURE X(10).
03 INOUTSTR PICTURE X(10).
03 OUTSTR PICTURE X(10).
03 RESULT PICTURE X(10).

**
COPY EXAMPLX.
**

**
*
* Operation List section
* This lists the operations and attributes which an
* interface supports
 278

API Reference Details
*

* The operation-name and its corresponding 88 level entry
01 SAMPLE-OPERATION PICTURE X(27).

88 SAMPLE-MYOPERATION VALUE
"myoperation:IDL:sample:1.0".

01 SAMPLE-OPERATION-LENGTH PICTURE 9(09)
BINARY VALUE 27.

**
*
* Typecode section
* This contains CDR encodings of necessary typecodes.
*

01 EXAMPLE-TYPE PICTURE X(29).
COPY CORBATYP.

88 SAMPLE-ABOUNDEDSTRING VALUE
"IDL:sample/Aboundedstring:1.0".

01 EXAMPLE-TYPE-LENGTH PICTURE S9(09)
BINARY VALUE 29.

* User exception block
**
01 EX-SAMPLE-MYEXCEPTION PICTURE X(26)

VALUE
"IDL:sample/MyException:1.0".

01 EX-SAMPLE-MYEXCEPTION-LENGTH PICTURE 9(09)
BINARY VALUE 26.

* user-exception-buffer

01 EXAMPLE-USER-EXCEPTIONS.
03 EXCEPTION-ID POINTER

VALUE NULL.
03 D PICTURE 9(10) BINARY

VALUE 0.
88 D-NO-USEREXCEPTION VALUE 0.
88 D-SAMPLE-MYEXCEPTION VALUE 1.
03 U PICTURE X(10)

VALUE LOW-VALUES.
03 EXCEPTION-SAMPLE-MYEXCEPTION REDEFINES U.
05 EXCEPT-STR PICTURE X(10).

Example 22:The idlmembername Copybook (Sheet 2 of 2)
279

CHAPTER 8 | API Reference
3. The following is an example of the server implementation code for the
myoperation operation:

Exceptions The appropriate CORBA exception is raised if an attempt is made to raise a
user exception that is not related to the invoked operation.

A CORBA::BAD_PARAM::UNKNOWN_TYPECODE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.

See also ï �COAGET� on page 281.

ï �COAPUT� on page 286.

ï �ORBEXEC� on page 317.

ï The BANK demonstration in orbixhlq.DEMOS.COBOL.SRC for a complete
example of how to use COAERR.

DO-SAMPLE-MYOPERATION.
SET D-NO-USEREXCEPTION TO TRUE.
CALL "COAGET" USING SAMPLE-MYOPERATION-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* Assuming some error has occurred in the application
IF APPLICATION-ERROR

* Raise the appropiate user exception
SET D-SAMPLE-MYEXCEPTION TO TRUE

* Populate the values of the exception to be bassed back to
* the client

MOVE "FATAL ERROR " TO EXCEPT-STR
OF EXAMPLE-USER-EXCEPTIONS

CALL "COAERR" USING EXAMPLE-USER-EXCEPTIONS
SET WS-COAERR TO TRUE
PERFORM CHECK-STATUS

ELSE
*all okay pass back the out/inout/return parameters.

CALL "COAPUT" USING SAMPLE-MYOPERATION-ARGS
SET WS-COAPUT TO TRUE
PERFORM CHECK-STATUS

END-IF.
 280

API Reference Details
COAGET

Synopsis COAGET(in buffer operation-buffer)
// Marshals in and inout arguments for an operation on the server
// side from an incoming request.

Usage Server-specific.

Description Each operation implementation must begin with a call to COAGET and end
with a call to COAPUT. Even if the operation takes no parameters and has no
return value, you must still call COAGET and COAPUT and, in such cases, pass
a dummy PIC X(1) data item, which the Orbix E2A IDL compiler generates
for such cases.

COAGET copies the incoming operation�s argument values into the complete
COBOL operation parameter buffer that is supplied. This buffer is generated
automatically by the Orbix E2A IDL compiler. Only in and inout values in
this structure are populated by this call.

The Orbix E2A IDL compiler generates the call for COAGET in the
idlmembernameS source module (where idlmembername represents the name
of the IDL member that contains the IDL definitions) for each attribute and
operation defined in the IDL.

Parameters The parameter for COAGET can be described as follows:

operation-buffer This is an in parameter that contains a COBOL 01
level data item representing the data types that the
operation supports.
281

CHAPTER 8 | API Reference
Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

interface sample {
typedef string<10> Aboundedstring;
exception MyException { Aboundedstring except_str; };
Aboundedstring myoperation(in Aboundedstring instr,

inout Aboundedstring inoutstr,
out Aboundedstring outstr)
raises (MyException);

};

Example 23:The idlmembername Copybook (Sheet 1 of 2)

* Operation: myoperation
* Mapped name: myoperation
* Arguments: <in> sample/Aboundedstring instr
* <inout> sample/Aboundedstring inoutstr
* <out> sample/Aboundedstring outstr
* Returns: sample/Aboundedstring
* User Exceptions: sample/MyException
**
* operation-buffer
01 SAMPLE-MYOPERATION-ARGS.

03 INSTR PICTURE X(10).
03 INOUTSTR PICTURE X(10).
03 OUTSTR PICTURE X(10).
03 RESULT PICTURE X(10).

**
COPY EXAMPLX.
**

*
* Operation List section
* This lists the operations and attributes which an
* interface supports
*
**
 282

API Reference Details
* The operation-name and its corresponding 88 level entry
01 SAMPLE-OPERATION PICTURE X(27).

88 SAMPLE-MYOPERATION VALUE
"myoperation:IDL:sample:1.0".

01 SAMPLE-OPERATION-LENGTH PICTURE 9(09)
BINARY VALUE 27.

*
* Typecode section
* This contains CDR encodings of necessary typecodes.
*
**

01 EXAMPLE-TYPE PICTURE X(29).
COPY CORBATYP.

88 SAMPLE-ABOUNDEDSTRING VALUE
"IDL:sample/Aboundedstring:1.0".

01 EXAMPLE-TYPE-LENGTH PICTURE S9(09)
BINARY VALUE 29.
**

* User exception block
**
01 EX-SAMPLE-MYEXCEPTION PICTURE X(26)

VALUE
"IDL:sample/MyException:1.0".

01 EX-SAMPLE-MYEXCEPTION-LENGTH PICTURE 9(09)
BINARY VALUE 26.

* user-exception-buffer

01 EXAMPLE-USER-EXCEPTIONS.
03 EXCEPTION-ID POINTER

VALUE NULL.
03 D PICTURE 9(10)

BINARY VALUE 0.
88 D-NO-USEREXCEPTION VALUE 0.
88 D-SAMPLE-MYEXCEPTION VALUE 1.
03 U PICTURE X(10)

VALUE LOW-VALUES.
03 EXCEPTION-SAMPLE-MYEXCEPTION REDEFINES U.
05 EXCEPT-STR PICTURE X(10).

Example 23:The idlmembername Copybook (Sheet 2 of 2)
283

CHAPTER 8 | API Reference
3. The following is an example of the server implementation code for the
myoperation operation, which is generated in the idlmembernameS
source member when you specify the -Z argument with the Orbix E2A
IDL compiler:

4. The following is an example of a modified version of the code in point 3
for the myoperation operation:

DO-SAMPLE-MYOPERATION.
SET D-NO-USEREXCEPTION TO TRUE.
CALL "COAGET" USING SAMPLE-MYOPERATION-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

EVALUATE TRUE
WHEN D-NO-USEREXCEPTION
CALL "COAPUT" USING SAMPLE-MYOPERATION-ARGS
SET WS-COAPUT TO TRUE
PERFORM CHECK-STATUS
END-EVALUATE.

When changed for this operation can look like this
Sample server implementation for myoperation

DO-SAMPLE-MYOPERATION.
SET D-NO-USEREXCEPTION TO TRUE.
CALL "COAGET" USING SAMPLE-MYOPERATION-ARGS.
SET WS-COAGET TO TRUE.

* Display what the client passed in
DISPLAY "In parameter value equals "
INSTR OF SAMPLE-MYOPERATION-ARGS.
DISPLAY "Inout parameter value equals "
INOUTSTR OF SAMPLE-MYOPERATION-ARGS.

*Now must populate the inout/out/return parameters if
*applicable. See COAPUT for example.

EVALUATE TRUE
WHEN D-NO-USEREXCEPTION
CALL "COAPUT" USING SAMPLE-MYOPERATION-ARGS
SET WS-COAPUT TO TRUE
PERFORM CHECK-STATUS
END-EVALUATE.
 284

API Reference Details
Exceptions A CORBA::BAD_INV_ORDER::ARGS_ALREADY_READ exception is raised if the in
or inout parameter for the request has already been processed.

A CORBA::BAD_PARAM::INVALID_DISCRIMINATOR_TYPECODE exception is
raised if the discriminator typecode is invalid when marshalling a union
type.

A CORBA::BAD_PARAM::UNKNOWN_TYPECODE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.

A CORBA::DATA_CONVERSION::VALUE_OUT_OF_RANGE exception is raised if the
value is determined to be out of range when marshalling a long, short,
unsigned short, unsigned long long long, or unsigned long long type.

See also ï �COAERR� on page 277.

ï �ORBEXEC� on page 317.
285

CHAPTER 8 | API Reference
COAPUT

Synopsis COAPUT(out buffer operation-buffer)
// Marshals return, out, and inout arguments for an operation on
// the server side from an incoming request.

Usage Server-specific.

Description Each operation implementation must begin with a call to COAGET and end
with a call to COAPUT. The COAPUT function copies the operation�s outgoing
argument values from the complete COBOL operation parameter buffer
passed to it. This buffer is generated automatically by the Orbix E2A IDL
compiler. Only inout, out, and the result out item are populated by this
call.

You must ensure that all inout, out, and result values are correctly
allocated (for dynamic types) and populated. If a user exception has been
raised before calling COAPUT, no inout, out, or result parameters are
marshalled, and nothing is returned in such cases. If a user exception has
been raised, COAERR must be called instead of COAPUT, and no inout, out,
or result parameters are marshalled. Refer to �COAERR� on page 277 for
more details.

The Orbix E2A IDL compiler generates the call for COAPUT in the
idlmembernameS source module for each attribute and operation defined in
the IDL.

Parameters The parameter for COAPUT can be described as follows:

operation-buffer This is an out parameter that contains a COBOL 01
level data item representing the data types that the
operation supports.
 286

API Reference Details
Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

interface sample {
typedef string<10> Aboundedstring;
exception MyException { Aboundedstring except_str; };
Aboundedstring myoperation(in Aboundedstring instr,

inout Aboundedstring inoutstr,
out Aboundedstring outstr)
raises (MyException);

};

Example 24:The idlmembername Copybook (Sheet 1 of 2)

**
* Operation: myoperation
* Mapped name: myoperation
* Arguments: <in> sample/Aboundedstring instr
* <inout> sample/Aboundedstring inoutstr
* <out> sample/Aboundedstring outstr
* Returns: sample/Aboundedstring
* User Exceptions: sample/MyException

* operation-buffer
01 SAMPLE-MYOPERATION-ARGS.

03 INSTR PICTURE X(10).
03 INOUTSTR PICTURE X(10).
03 OUTSTR PICTURE X(10).
03 RESULT PICTURE X(10).

**
COPY EXAMPLX.
**

*
* Operation List section
* This lists the operations and attributes which an
* interface supports
*

287

CHAPTER 8 | API Reference
* The operation-name and its corresponding 88 level entry
01 SAMPLE-OPERATION PICTURE X(27).

88 SAMPLE-MYOPERATION VALUE
"myoperation:IDL:sample:1.0".

01 SAMPLE-OPERATION-LENGTH PICTURE 9(09)
BINARY VALUE 27.

**
*
* Typecode section
* This contains CDR encodings of necessary typecodes.
*
**

01 EXAMPLE-TYPE PICTURE X(29).
COPY CORBATYP.

88 SAMPLE-ABOUNDEDSTRING VALUE
"IDL:sample/Aboundedstring:1.0".

01 EXAMPLE-TYPE-LENGTH PICTURE S9(09)
BINARY VALUE 29.

* User exception block

01 EX-SAMPLE-MYEXCEPTION PICTURE X(26)
VALUE

"IDL:sample/MyException:1.0".
01 EX-SAMPLE-MYEXCEPTION-LENGTH PICTURE 9(09)

BINARY VALUE 26.
* user exception buffer
01 EXAMPLE-USER-EXCEPTIONS.

03 EXCEPTION-ID POINTER
VALUE NULL.

03 D PICTURE 9(10)
BINARY.
VALUE 0.

88 D-NO-USEREXCEPTION VALUE 0.
88 D-SAMPLE-MYEXCEPTION VALUE 1.

03 U PICTURE X(10)
VALUE LOW-VALUES.

03 EXCEPTION-SAMPLE-MYEXCEPTION REDEFINES U.
05 EXCEPT-STR PICTURE X(10).

Example 24:The idlmembername Copybook (Sheet 2 of 2)
 288

API Reference Details
3. The following is an example of the server implementation code for the
myoperation operation, which is generated in the idlmembernameS
source member when you specify the -Z argument with the Orbix E2A
IDL compiler:

DO-SAMPLE-MYOPERATION.
SET D-NO-USEREXCEPTION TO TRUE.
CALL "COAGET" USING SAMPLE-MYOPERATION-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* TODO: Add your operation specific code here

EVALUATE TRUE
WHEN D-NO-USEREXCEPTION
CALL "COAPUT" USING SAMPLE-MYOPERATION-ARGS
SET WS-COAPUT TO TRUE
PERFORM CHECK-STATUS
END-EVALUATE.
289

CHAPTER 8 | API Reference
4. The following is an example of a modified version of the code in point 3
for the myoperation operation

Exceptions A CORBA::BAD_INV_ORDER::ARGS_NOT_READ exception is raised if the in or
inout parameters for the request have not been processed.

A CORBA::BAD_PARAM::INVALID_DISCRIMINATOR_TYPECODE exception is
raised if the discriminator typecode is invalid when marshalling a union
type.

A CORBA::BAD_PARAM::UNKNOWN_TYPECODE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.

A CORBA::DATA_CONVERSION::VALUE_OUT_OF_RANGE exception is raised if the
value is determined to be out of range when marshalling a long, short,
unsigned short, unsigned long long long, or unsigned long long type.

When changed for this operation can look like this
Sample server implementation for myoperation

DO-SAMPLE-MYOPERATION.
SET D-NO-USEREXCEPTION TO TRUE.
CALL "COAGET" USING SAMPLE-MYOPERATION-ARGS.
SET WS-COAGET TO TRUE.

* Display what the client passed in
DISPLAY "In parameter value equals "
INSTR OF SAMPLE-MYOPERATION-ARGS.
DISPLAY "Inout parameter value equals "
INOUTSTR OF SAMPLE-MYOPERATION-ARGS.

*Now must populate the inout/out/return parameters if
*applicable

MOVE "Client" TO INOUTSTR OF SAMPLE-MYOPERATION-ARGS.
MOVE "xxxxx" TO OUTSTR OF SAMPLE-MYOPERATION-ARGS.
MOVE "YYYYY" TO RESULT OF SAMPLE-MYOPERATION-ARGS.

EVALUATE TRUE
WHEN D-NO-USEREXCEPTION
CALL "COAPUT" USING SAMPLE-MYOPERATION-ARGS
SET WS-COAPUT TO TRUE
PERFORM CHECK-STATUS
END-EVALUATE.
 290

API Reference Details
See also ï �COAERR� on page 277.

ï �ORBEXEC� on page 317.
291

CHAPTER 8 | API Reference
COAREQ

Synopsis COAREQ(in buffer request-details)
// Provides current request information

Usage Server-specific.

Description The server implementation program calls COAREQ to extract the relevant
information about the current request. COAREQ provides information about
the current invocation request in a request information buffer, which is
defined as follows in the supplied CORBA copybook:

In the preceding structure, the first three data items are unbounded CORBA
character strings. You can use the STRGET function to copy the values of
these strings to COBOL bounded string data items. The TARGET item in the
preceding structure is the COBOL object reference for the operation
invocation. After COAREQ is called, the structure contains the following data:

You can call COAREQ only once for each operation invocation. It must be
called after a request has been dispatched to a server, and before any calls
are made to access the parameter values. Supplied code is generated in the
idlmembernameS source module by the Orbix E2A IDL compiler when you
specify the -Z argument. Ensure that the COBOL bounded string and the
length fields are large enough to retrieve the data from the REQUEST-INFO
pointers.

01 REQUEST-INFO.
03 INTERFACE-NAME USAGE IS POINTER VALUE NULL.
03 OPERATION-NAME USAGE IS POINTER VALUE NULL.
03 PRINCIPAL USAGE IS POINTER VALUE NULL.
03 TARGET USAGE IS POINTER VALUE NULL.

INTERFACE-NAME The name of the interface, which is stored as an
unbounded string.

OPERATION-NAME The name of the operation for the invocation request,
which is stored as an unbounded string.

PRINCIPAL The name of the client principal that invoked the request,
which is stored as an unbounded string.

TARGET The object reference of the target object.
 292

API Reference Details
Parameters The parameter for COAREQ can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

request-details This is an in parameter that contains a COBOL 01
level data item representing the current request.

//IDL
module Simple
{

interface SimpleObject
{

void
call_me();

};
};

Example 25:The idlmembername Copybook (Sheet 1 of 2)

* Operation: call_me
* Mapped name: call_me
* Arguments: None
* Returns: void
* User Exceptions: none

01 SIMPLE-SIMPLEOBJECT-70FE-ARGS.

03 FILLER PICTURE X(01).

COPY SIMPLEX.

*
* Operation List section
* This lists the operations and attributes which an
* interface supports
*

293

CHAPTER 8 | API Reference
3. The following is an example of the server implementation code
generated in the idlmembernameS server implementation member:

01 SIMPLE-SIMPLEOBJECT-OPERATION PICTURE X(36).
88 SIMPLE-SIMPLEOBJECT-CALL-ME VALUE

"call_me:IDL:Simple/SimpleObject:1.0".
01 SIMPLE-S-3497-OPERATION-LENGTH PICTURE 9(09)

BINARY VALUE 36.

*
* Typecode section
* This contains CDR encodings of necessary typecodes.
*

01 SIMPLE-TYPE PICTURE X(27).

COPY CORBATYP.
88 SIMPLE-SIMPLEOBJECT VALUE

"IDL:Simple/SimpleObject:1.0".
01 SIMPLE-TYPE-LENGTH PICTURE S9(09)

BINARY VALUE 27.

Example 25:The idlmembername Copybook (Sheet 2 of 2)

Example 26: Part of the idlmembernameS Program (Sheet 1 of 2)

WORKING-STORAGE SECTION
01 WS-INTERFACE-NAME PICTURE X(30).
01 WS-INTERFACE-NAME-LENGTH PICTURE 9(09) BINARY

VALUE 30.
PROCEDURE DIVISION.

ENTRY "DISPATCH".

CALL "COAREQ" USING REQUEST-INFO.
SET WS-COAREQ TO TRUE.
PERFORM CHECK-STATUS.

* Resolve the pointer reference to the interface name
* which is the fully scoped interface name.
* Note make sure it can handle the max interface name
* length.

CALL "STRGET" USING INTERFACE-NAME
WS-INTERFACE-NAME-LENGTH
 294

API Reference Details
WS-INTERFACE-NAME.
SET WS-STRGET TO TRUE.
PERFORM CHECK-STATUS.

* Interface(s) evaluation:

MOVE SPACES TO SIMPLE-SIMPLEOBJECT-OPERATION.

EVALUATE WS-INTERFACE-NAME
WHEN 'IDL:Simple/SimpleObject:1.0'

* Resolve the pointer reference to the operation
* information

CALL "STRGET" USING OPERATION-NAME
SIMPLE-S-3497-OPERATION-LENGTH
SIMPLE-SIMPLEOBJECT-OPERATION

SET WS-STRGET TO TRUE
PERFORM CHECK-STATUS
DISPLAY "Simple::" SIMPLE-SIMPLEOBJECT-OPERATION
"invoked"

END-EVALUATE.
COPY SIMPLED.

GOBACK.
DO-SIMPLE-SIMPLEOBJECT-CALL-ME.
CALL "COAGET" USING SIMPLE-SIMPLEOBJECT-70FE-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

CALL "COAPUT" USING SIMPLE-SIMPLEOBJECT-70FE-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

**
* Check Errors Copybook
**

COPY CHKERRS.

Note: The COPY CHKERRS statement in the preceding example is used in
batch programs. It is replaced with COPY CERRSMFA in IMS or CICS server
programs.

Example 26: Part of the idlmembernameS Program (Sheet 2 of 2)
295

CHAPTER 8 | API Reference
Exceptions A CORBA::BAD_INV_ORDER::NO_CURRENT_REQUEST exception is raised if there
is no request currently in progress.

A CORBA::BAD_INV_ORDER::SERVER_NAME_NOT_SET exception is raised if
ORBSRVR is not called.
 296

API Reference Details
COARUN

Synopsis COARUN
// Indicates the server is ready to accept requests.

Usage Server-specific.

Description The COARUN function indicates that a server is ready to start receiving client
requests. It is equivalent to calling ORB::run() in C++. Refer to the CORBA
Programmerís Reference, C++ for more details about ORB::run(). There
are no parameters required for calling COARUN. The call to COARUN is the final
API call in your server mainline program.

Parameters COARUN takes no parameters.

Example The following is an example of how to use COARUN in your server mainline
program:

Exceptions A CORBA::BAD_INV_ORDER::SERVER_NAME_NOT_SET exception is raised if
ORBSRVR is not called.

DISPLAY "Giving control to the ORB to process requests".

CALL "COARUN".
SET WS-COARUN TO TRUE.
PERFORM CHECK-STATUS.
297

CHAPTER 8 | API Reference
MEMALLOC

Synopsis MEMALLOC(in 9(09) BINARY memory-size,
out POINTER memory-pointer)

// Allocates memory at runtime from the program heap.

Usage Common to clients and servers.

Description The MEMALLOC function allocates the specified number of bytes from the
program heap at runtime, and returns a pointer to the start of this memory
block.

MEMALLOC is used to allocate space for dynamic structures. However, it is
recommended that you use SEQALLOC when allocating memory for
sequences, because SEQALLOC can automatically determine the amount of
memory required for sequences. Refer to �SEQALLOC� on page 335 for
more details.

Parameters The parameters for MEMALLOC can be described as follows:

Exceptions A CORBA::NO_MEMORY exception is raised if there is not enough memory
available to complete the request. In this case, the pointer will contain a null
value.

memory-size This is an in parameter that specifies in bytes the
amount of memory that is to be allocated.

memory-pointer This is an out parameter that contains a pointer to
the allocated memory block.
 298

API Reference Details
Example The following is an example of how to use MEMALLOC in a client or server
program:

See also ï �MEMFREE� on page 300.

ï �Memory Handling� on page 383.

WORKING-STORAGE SECTION.

01 WS-MEMORY-BLOCK POINTER VALUE NULL.
01 WS-MEMORY-BLOCK-SIZE PICTURE 9(09) BINARY VALUE 30.

PROCEDURE DIVISION.
…
* allocates 30 bytes of memory at runtime from the heap

CALL "MEMALLOC" USING WS-MEMORY-BLOCK-SIZE
WS-MEMORY-BLOCK.
299

CHAPTER 8 | API Reference
MEMFREE

Synopsis MEMFREE(inout POINTER memory-pointer)
// Frees dynamically allocated memory.

Usage Common to clients and servers.

Description The MEMFREE function releases dynamically allocated memory, by means of a
a pointer that was originally obtained by using MEMALLOC. Do not try to use
this pointer after freeing it, because doing so might result in a runtime error.

Parameters The parameter for MEMFREE can be described as follows:

Example The following is an example of how to use MEMFREE in a client or server
program:

See also �MEMALLOC� on page 298.

memory-pointer This is an inout parameter that contains a pointer
to the allocated memory block.

WORKING-STORAGE SECTION.
01 WS-MEMORY-BLOCK POINTER VALUE NULL.

PROCEDURE DIVISION.

…
* Finished with the block of memory allocated by call to MEMALLOC

CALL "MEMFREE" USING WS-MEMORY-BLOCK.
 300

API Reference Details
OBJDUP

Synopsis OBJDUP(in POINTER object-reference,
out POINTER duplicate-obj-ref)

// Duplicates an object reference.

Usage Common to clients and servers.

Description The OBJDUP function creates a duplicate reference to an object. It returns a
new reference to the original object reference and increments the reference
count of the object. It is equivalent to calling CORBA::Object::_duplicate()
in C++. Because object references are opaque and ORB-dependent, your
application cannot allocate storage for them. Therefore, if more than one
copy of an object reference is required, you can use OBJDUP to create a
duplicate.

Parameters The parameters for OBJDUP can be described as follows:

Example The following is an example of how to use OBJDUP in a client or server
program:

object-reference This is an in parameter that contains the valid
object reference.

duplicate-obj-ref This is an out parameter that contains the duplicate
object reference.

WORKING-STORAGE SECTION.
01 WS-SIMPLE-SIMPLEOBJECT POINTER VALUE NULL.
01 WS-SIMPLE-SIMPLE0BJECT-COPY POINTER VALUE NULL.

PROCEDURE DIVISION.
…
* Note that the object reference will have been created,
* for example, by a call to OBJNEW.

CALL "OBJDUP" USING WS-SIMPLE-SIMPLEOBJECT
WS-SIMPLE-SIMPLEOBJECT-COPY.

SET WS-OBJDUP TO TRUE.
PERFORM CHECK-STATUS.
301

CHAPTER 8 |

API Reference Details
OBJGETID

Synopsis OBJGETID(in POINTER object-reference,
out X(nn) object-id,
in 9(09) BINARY object-id-length)

// Retrieves the object ID from an object reference.

Usage Common to clients and servers.

Description The OBJGETID function retrieves the object ID string from an object
reference. It is equivalent to calling POA::reference_to_id in C++.

Parameters The parameters for OBJGETID can be described as follows:

Exceptions A CORBA::BAD_PARAM::LENGTH_TOO_SMALL exception is raised if the length of
the string containing the object name is greater than the object-id-length
parameter.

A CORBA::BAD_PARAM::INVALID_OBJECT_ID exception is raised if an Orbix
2.3 object reference is passed.

A CORBA::BAD_INV_ORDER::SERVER_NAME_NOT_SET exception is raised if
ORBSRVR is not called.

object-reference This is an in parameter that contains the valid
object reference.

object-id This is an out parameter that is a bounded string
containing the object name relating to the specified
object reference. If this string is not large enough to
contain the object name, the returned string is
truncated.

object-id-length This is an in parameter that specifies the length of
the object name.
303

CHAPTER 8 | API Reference
Example The following is an example of how to use OBJGETID in a client or server
program:

WORKING-STORAGE SECTION.

01 WS-OBJECT-IDENTIFIER-LEN PICTURE 9(09) BINARY VALUE 0.
01 WS-OBJECT-IDENTIFIER PICTURE X(20) VALUE SPACES.
01 WS-OBJECT POINTER VALUE NULL.

PROCEDURE DIVISION.
…
* Note that the object reference will have been created, for
* example, by a call to OBJNEW.

MOVE 20 TO WS-OBJECT-ID-LENGTH.
CALL "OBJGETID" USING WS-OBJECT

WS-OBJECT-IDENTIFIER
WS-OBJECT-IDENTIFIER-LEN.

SET WS-OBJGETID TO TRUE.
PERFORM CHECK-STATUS.

DISPLAY "Object identifier string equals "
WS-OBJECT-ID-STRING.
 304

API Reference Details
OBJNEW

Synopsis OBJNEW(in X(nn) server-name,
in X(nn) interface-name,
in X(nn) object-id,
out POINTER object-reference)

// Creates a unique object reference.

Usage Server-specific.

Description The OBJNEW function creates a unique object reference that encapsulates the
specified object identifier and interface names. The resulting reference can
be returned to clients to initiate requests on that object. It is equivalent to
calling POA::create_reference_with_id in C++.

Parameters The parameters for OBJNEW can be described as follows:

server-name This is an in parameter that is a bounded string
containing the server name. This must be the same
as the value passed to ORBSRVR. This string must be
terminated by at least one space.

interface-name This is an in parameter that is a bounded string
containing the interface name. This must be the
same as the value specified in the idlmembername
and idlmembernameX copybooks (that is, of the form
IDL:name:version_number). This string must be
terminated by at least one space.

object-id This is an in parameter that is a bounded string
containing the object identifier name relating to the
specified object reference. This string must be
terminated by at least one space.

object-reference This is an out parameter that contains the created
object reference.
305

CHAPTER 8 | API Reference
Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

// IDL
module Simple
{

interface SimpleObject
{

void
call_me();

};
};

WORKING-STORAGE SECTION.

01 WS-SERVER-NAME PICTURE X(18) VALUE
"simple_persistent ".

01 WS-SERVER-NAME-LEN PICTURE 9(09) BINARY VALUE 17.

01 WS-INTERFACE-NAME PICTURE X(28) VALUE
"IDL:Simple/SimpleObject:1.0 ".

01 WS-OBJECT-IDENTIFIER PICTURE X(17) VALUE
"my_simple_object ".

01 WS-SIMPLE-SIMPLEOBJECT POINTER VALUE NULL.
PROCEDURE DIVISION.

…
CALL "OBJNEW" USING WS-SERVER-NAME

WS-INTERFACE-NAME
WS-OBJECT-IDENTIFIER
WS-SIMPLE-SIMPLEOBJECT.

SET WS-OBJNEW TO TRUE.
PERFORM CHECK-STATUS.
 306

API Reference Details
Exceptions A CORBA::BAD_PARAM::INVALID_SERVER_NAME exception is raised if the
server name does not match the server name passed to ORBSRVR.

A CORBA::BAD_PARAM::NO_OBJECT_IDENTIFIER exception is raised if the
parameter for the object identifier name is an invalid string.

A CORBA::BAD_INV_ORDER::INTERFACE_NOT_REGISTERED exception is raised
if the specified interface has not been registered via ORBREG.

A CORBA::BAD_INV_ORDER::SERVER_NAME_NOT_SET exception is raised if
ORBSRVR is not called.
307

CHAPTER 8 | API Reference
OBJREL

Synopsis OBJREL(inout POINTER object-reference)
// Releases an object reference.

Usage Common to clients and servers.

Description The OBJREL function indicates that the caller will no longer access the object
reference. It is equivalent to calling CORBA::release() in C++. OBJREL
decrements the reference count of the object reference.

Parameters The parameter for OBJREL can be described as follows:

Example The following is an example of how to use OBJREL in a client or server
program:

object-reference This is an inout parameter that contains the valid
object reference.

WORKING-STORAGE SECTION.
01 WS-SIMPLE-SIMPLEOBJECT POINTER VALUE NULL.
01 WS-SIMPLE-SIMPLEOBJECT-COPY POINTER VALUE NULL.

PROCEDURE DIVISION.
…
* Note that the object reference will have been created, for
* example, by a call to OBJNEW.

CALL "OBJDUP" USING WS-SIMPLE-SIMPLE0BJECT
WS-SIMPLE-SIMPLEOBJECT-COPY.

SET WS-OBJDUP TO TRUE.
PERFORM CHECK-STATUS.

CALL "OBJREL" USING WS-SIMPLE-SIMPLEOBJECT-COPY.
SET WS-OBJREL TO TRUE.
PERFORM CHECK-STATUS.
 308

API Reference Details
See also ï �OBJDUP� on page 301.

ï �Object References and Memory Management� on page 393.
309

CHAPTER 8 | API Reference
OBJRIR

Synopsis OBJRIR(in X(nn) desired-service,
out POINTER object-reference)

// Returns an object reference to an object through which a
// service such as the Naming Service can be used.

Usage Common to clients and servers.

Description The OBJRIR function returns an object reference, through which a service
(for example, the Interface Repository or a CORBAservice like the Naming
Service) can be used. For example, the Naming Service is accessed by using
a desired-service string with the "NameService " value. It is equivalent to
calling ORB::resolve_initial_services() in C++.

Table 26 shows the common services available, along with the COBOL
identifier assigned to each service. The COBOL identifiers are declared in the
CORBA copybook.

Not all the services available in C++ are available in COBOL. Refer to the
list_initial_services function in the CORBA Programmerís Reference,
C++ for details of all the available services.

 Parameters The parameters for OBJRIR can be described as follows:

Table 26: Summary of Common Services and Their COBOL Identifiers

Service COBOL Identifier

InterfaceRepository IFR-SERVICE

NameService NAMING-SERVICE

TradingService TRADING-SERVICE

desired-service This is an in parameter that is a string specifying
the desired service. This string is terminated by a
space.

object-reference This is an out parameter that contains an object
reference for the desired service.
 310

API Reference Details
Example The example can be broken down as follows:

1. The following code is defined in the supplied CORBA copybook:

2. The following is an example of how to use OBJRIR in a client or server
program:

Exceptions A CORBA::ORB::InvalidName exception is raised if the desired-service
string is invalid.

01 SERVICE-REQUESTED PICTURE X(20)
VALUE SPACES.

88 IFR-SERVICE VALUE "InterfaceRepository ".
88 NAMING-SERVICE VALUE "NameService ".
88 TRADING-SERVICE VALUE "TradingService ".

WORKING-STORAGE SECTION
01 WS-NAMESERVICE-OBJ POINTER VALUE NULL.

PROCEDURE DIVISION.

…
SET NAMING-SERVICE TO TRUE.
CALL "OBJRIR" USING SERVICE-REQUESTED

WS-NAMESERVICE-OBJ.
SET WS-OBJRIR TO TRUE.
PERFORM CHECK-STATUS.
311

CHAPTER 8 | API Reference

n t()-6.7(he .)]TJ
-16.3333 -1.3333 TD
-0.0017 Tc
0.0013 Tw
[next, (he .)-6.7(b(ject refelen)-1(c10.5(eitselfe isen)-1oc10.8((acion)-8(v)3.6len)-1liet(vlur)-5((fi)-4.8ra s).6(t-1oc)-4.8rn)3.1(in)-(g()]TJ
T*[(refelen)-1(c10.5(sn t()-6.7(b(jecs im)-6.4n)-1.7((pepsitiet(_st)]TJ
)5.87 0 TD
-0.0018 Tc-0.003 Tw
[to)-5.5(c)2.4(ge o(r)-42((fi)-5.5(co)-5.9oc101(ommo)-5.7(nicaling(r)-42((e)-085(fer)-42((e)-085(ncs)-6.7 .)]TJ
-)5.87 -1.3333 TD
-0.0322 Tc
0.0324 Tw
[byo)-52((me(a)-4n) -0.(es o)67.9(t)4(h)64.7(e(j 2(r()-6.7(h)-6.7(an)-7.1(invo)-52(oi)-0.3c(a)-4 t)-375(i)-1.8(an)-7.1s.)]TJ
/TT6 1 Tf
-15.7467 -3.26 TD
-0.0208 Tc
0 Tw
[Paf)-3.9raf)-3.9mse)-7.7(fer)-52(se)]TJ
/TT8 1 Tf
15.7467 0 TD
0.0023 Tc
-0.003 Tw
[Thn)3.3e paraq)5.1me(fes(fi-3.1(g)]TJ
/F2 1 Tf
7.9787 0 0 7.978730)0.900735-1.2315 Tm
-0.0511 Tc
0 Tw
[(OBN)-7.5((OST)-7.5())]TJ
/TT8 1 Tf
8.9985 0 0 8.9985 325.048735-1.2315 Tm
-0.0005 Tc
-0.0013 Tw
[(cen bedDescrbr)43(e)-6.2(d46.3(s(follwf)2.8s)-1.2:)]TJ
/F2 1 Tf
7.9787 0 0 7.9787 225.84313331.9645 Tm
-0.0511 Tc
0 Tw
[o(bje)-7.5(cte)-7.5(refe)-7.5(ren)-7.5(c))]TJ
/TT8 1 Tf
8.9985 0 0 8.9985 -1918761333125615 Tm
-0.0014 Tc
0.0063 Tw
[Thiso)-6.3(iscen)]TJ
/F2 1 Tf
7.9787 0 0 7.97873548.0409333125615 Tm
-0.0511 Tc
0 Tw1(in)Tj
/TT8 1 Tf
8.9985 0 0 8.9985 6-7.9951333125615 Tm
-0.0045 Tc
-0.0024 Tw
[parame(fe (ha)47.5(t)05.9(ontairns(he (b(jec)52.8()]TJ
)5.87 -122667 TD
-0.0211 Tc
0 Tw
[ref))43(e)13.1(r)47.5e)13.1(nce)]TJ
/F2 1 Tf
7.9787 0 0 7.9787 225.843130 7.4076 Tm
-0.0511 Tc
[o(bje)-7.5(cte)-7.5 stri)-7.5ing)]TJ
/TT8 1 Tf
8.9985 0 0 8.9985 -191876130 722008 Tm
-0.0014 Tc
0.0063 Tw
[Thiso)-6.3(iscen)]TJ
/F2 1 Tf
7.9787 0 0 7.97873548.040930 722008 Tm
-0.0511 Tc
0 Tw
[ous)-7.5(t)]TJ
/TT8 1 Tf
8.9985 0 0 8.9985 720.078730 722008 Tm
-0.0003 Tc
-0.0005 Tw
[parame(fe (hac)52.8()-6.7(cntairns()-5.9hf)-38(e()]TJ
)5.8733 -1220 TD
-0.0094 Tc
0.0003 Tw
[strini)-6.2ft)3.6(wed reprec)-5.8iettatioe
OBJTOSTR

Synopsis OBJTOSTR(in POINTER object-reference,
out POINTER object-string)

// Returns a stringified interoperable object reference (IOR)
// from a valid object reference.

Usage Common to clients and servers.

Description The OBJTOSTR function returns a string representation of an object reference.
It translates an object reference into a string, and the resulting value can
then be stored or communicated in whatever ways strings are manipulated.

A string representation of an object reference has an IOR: prefix followed by
a series of hexadecimal octets. It is equivalent to calling
CORBA::ORB::object_to_string() in C++.

Because an object reference is opaque and might dif6(j 4(v fer)43(om one (OR
 312

API Reference Details
Example The following is an example of how to use OBJTOSTR in a client or server
program:

See also �STRTOOBJ� on page 367.

WORKING-STORAGE SECTION.
01 WS-SIMPLE-SIMPLEOBJECT POINTER VALUE NULL.
01 WS-IOR-PTR POINTER VALUE NULL.
01 WS-IOR-STRING PICTURE X(2048) VALUE SPACES.
01 WS-IOR-LEN PICTURE 9(09) BINARY VALUE 2048.

PROCEDURE DIVISION.
…
* Note that the object reference will have been created, for
* example, by a call to OBJNEW.

CALL "OBJTOSTR" USING WS-SIMPLE-SIMPLEOBJECT
WS-IOR-PTR.

SET WS-OBJTOSTR TO TRUE.
PERFORM CHECK-STATUS.

CALL "STRGET" USING WS-IOR-PTR
WS-IOR-LEN
WS-IOR-STRING.

SET WS-STRGET TO TRUE.
PERFORM CHECK-STATUS.
DISPLAY "Interoperable object reference (IOR) equals "
WS-IOR-STRING.
313

CHAPTER 8 | API Reference
ORBARGS

Synopsis ORBARGS(in X(nn) argument-string,
in 9(09) BINARY argument-string-length,
in X(nn) orb-name,
in 9(09) BINARY orb-name-length)

// Initializes a client or server connection to an ORB.

Usage Common to clients and servers.

Description The ORBARGS function initializes a client or server connection to the ORB, by
making a call to CORBA::ORB_init() in C++. It first initializes an
application in the ORB environment and then it returns the ORB
pseudo-object reference to the application for use in future ORB calls.

Because applications do not initially have an object on which to invoke ORB
calls, ORB_init() is a bootstrap call into the CORBA environment.
Therefore, the ORB_init() call is part of the CORBA module but is not part of
the CORBA::ORB class.

The arg-list is optional and is usually not set. The use of the orb-name is
recommended, because if it is not specified, a default ORB name is used.

Special ORB identifiers (indicated by either the orb-name parameter or the
-ORBid argument) are intended to uniquely identify each ORB used within
the same location domain in a multi-ORB application. The ORB identifiers
are allocated by the ORB administrator who is responsible for ensuring that
the names are unambiguous.

When you are assigning ORB identifiers via ORBARGS, if the orb-name
parameter has a value, any -ORBid arguments in the argv are ignored.
However, all other ORB arguments in argv might be significant during the
ORB initialization process. If the orb-name parameter is null, the ORB
identifier is obtained from the -ORBid argument of argv. If the orb-name is
null and there is no -ORBid argument in argv, the default ORB is returned in
the call.
 314

API Reference Details
Parameters The parameters for ORBARGS can be described as follows:

ORB arguments Each ORB argument is a sequence of configuration strings or options of the
following form:

The suffix is the name of the ORB option being set. The value is the value to
which the option is set. There must be a space between the suffix and the
value. Any string in the argument list that is not in one of these formats is
ignored by the ORB_init() method.

Valid ORB arguments include:

argument-string This is an in parameter that is a bounded string
containing the argument list of the
environment-specific data for the call. Refer to
�ORB arguments� for more details.

argument-string-length This is an in parameter that specifies the length of
the argument string list.

orb-name This is an in parameter that is a bounded string
containing the ORB identifier for the initialized
ORB, which must be unique for each server across
a location domain. However, client-side ORBs and
other "transient" ORBs do not register with the
locator, so it does not matter what name they are
assigned.

orb-name-length This is an in parameter that specifies the length of
the ORB identifier string.

-ORBsuffix value

-ORBboot_domain valueThis indicates where to get boot configuration
information.

-ORBdomain value This indicates where to get the ORB actual
configuration information.

-ORBid value This is the ORB identifier.

-ORBname value This is the ORB name.
315

CHAPTER 8 | API Reference
Example The following is an example of how to use ORBARGS in a client or server
program:

Exceptions A CORBA::BAD_INV_ORDER::ADAPTER_ALREADY_INITIALIZED exception is
raised if ORBARGS is called more than once in a client or server.

WORKING-STORAGE SECTION.
01 ARG-LIST PICTURE X(01) VALUE SPACES
01 ARG-LIST-LEN PICTURE 9(09) BINARY VALUE 0.
01 ORB-NAME PICTURE X(10) VALUE "simple_orb"
01 ORB-NAME-LEN PICTURE 9(09) BINARY VALUE 10.

PROCEDURE DIVISION.
…

DISPLAY "Initializing the ORB".
CALL "ORBARGS" USING ARG-LIST

ARG-LIST-LEN
ORB-NAME
ORB-NAME-LEN.

SET WS-ORBARGS TO TRUE.
PERFORM CHECK-STATUS.
 316

API Reference Details
ORBEXEC

Synopsis ORBEXEC(in POINTER object-reference,
in X(nn) operation-name,
inout buffer operation-buffer,
inout buffer user-exception-buffer)

// Invokes an operation on the specified object.

Usage Client-specific. (Batch clients only.)

Description The ORBEXEC function allows a COBOL client to invoke operations on the
server interface represented by the supplied object reference. All in and
inout parameters must be set up prior to the call. ORBEXEC invokes the
specified operation for the specified object, and marshals and populates the
operation buffer, depending on whether they are in, out, inout, or return
arguments.

As shown in the following example, the
317

CHAPTER 8 | API Reference
Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

operation-buffer This is an inout parameter that contains a COBOL
01 level data item representing the data types that
the operation supports.

user-exception-bufferThis is an in parameter that contains the COBOL
representation of the user exceptions that the
operation supports, as defined in the
idlmembername copybook generated by the Orbix
E2A IDL compiler. If the IDL operation supports no
user exceptions, a dummy buffer is generated�this
dummy buffer is not populated on the server side,
and it is only used as the fourth (in this case,
dummy) parameter to ORBEXEC.

// IDL
interface sample
{

typedef string<10> Aboundedstring;
exception MyException {Aboundedstring except_str; };
Aboundedstring myoperation(in Aboundedstring instr,

inout Aboundedstring inoutstr,
out Aboundedstring outstr)
raises(MyException);

};

Example 27: The idlmembername Copybook (Sheet 1 of 3)

* Operation: myoperation
* Mapped name: myoperation
* Arguments: <in> sample/Aboundedstring instr
* <inout> sample/Aboundedstring inoutstr
* <out> sample/Aboundedstring outstr
* Returns: sample/Aboundedstring
* User Exceptions: sample/MyException
 318

API Reference Details
**
* operation-buffer
01 SAMPLE-MYOPERATION-ARGS.

03 INSTR PICTURE X(10).
03 INOUTSTR PICTURE X(10).
03 OUTSTR PICTURE X(10).
03 RESULT PICTURE X(10).

**
COPY EXAMPLX.
**

**
*
* Operation List section
* This lists the operations and attributes which an
* interface supports
*
**

* The operation-name and its corresponding 88 level entry
01 SAMPLE-OPERATION PICTURE X(27).

88 SAMPLE-MYOPERATION VALUE
"myoperation:IDL:sample:1.0".

01 SAMPLE-OPERATION-LENGTH PICTURE 9(09)
BINARY VALUE 27.

**
*
* Typecode section
* This contains CDR encodings of necessary typecodes.
*
**

01 EXAMPLE-TYPE PICTURE X(29).
COPY CORBATYP.
88 SAMPLE-ABOUNDEDSTRING VALUE

"IDL:sample/Aboundedstring:1.0".
01 EXAMPLE-TYPE-LENGTH PICTURE S9(09)

BINARY VALUE 29.

* User exception block

01 EX-SAMPLE-MYEXCEPTION PICTURE X(26)

VALUE

Example 27: The idlmembername Copybook (Sheet 2 of 3)
319

CHAPTER 8 | API Reference
3. The following is an example of how to use ORBEXEC in a client program:

"IDL:sample/MyException:1.0".
01 EX-SAMPLE-MYEXCEPTION-LENGTH PICTURE 9(09)

BINARY VALUE 26.

* user exception buffer
01 EXAMPLE-USER-EXCEPTIONS.

03 EXCEPTION-ID POINTER
VALUE NULL.

03 D PICTURE 9(10) BINARY
VALUE 0.

88 D-NO-USEREXCEPTION VALUE 0.
88 D-SAMPLE-MYEXCEPTION VALUE 1.

03 U PICTURE X(10)
VALUE LOW-VALUES.

03 EXCEPTION-SAMPLE-MYEXCEPTION REDEFINES U.
05 EXCEPT-STR PICTURE X(10).

Example 27: The idlmembername Copybook (Sheet 3 of 3)

Example 28:Using ORBEXEC in the Client Program (Sheet 1 of 2)

WORKING-STORAGE SECTION.
01 WS-SAMPLE-OBJ POINTER VALUE NULL.
01 WS-EXCEPT-ID-STR PICTURE X(200) VALUES SPACES.

PROCEDURE DIVISION.
…
*The SAMPLE-OBJ will have been created
*with a previous call to api STRTOOBJ

SET SAMPLE-MYOPERATION TO TRUE
DISPLAY "invoking Simple::" SAMPLE-OPERATION.

* populate the in arguments
MOVE "Hello " TO INSTR OF SAMPLE-MYOPERATION-ARGS.

* populate the inout arguments

MOVE "Server " TO INOUTSTR OF SAMPLE-MYOPERATION-ARGS.

CALL "ORBEXEC" USING WS-SAMPLE-OBJ
SAMPLE-OPERATION
SAMPLE-MYOPERATION-ARGS
SAMPLE-USER-EXCEPTIONS.

SET WS-ORBEXEC TO TRUE.
PERFORM CHECK-STATUS.

* check if user exceptions thrown
 320

API Reference Details
EVALUATE TRUE
WHEN D-NO-USEREXCEPTION

* no exception
* check inout arguments

DISPLAY "In out parameter returned equals "
INOUTSTR OF SAMPLE-MYOPERATION-ARGS

* check out arguments
DISPLAY "Out parameter returned equals "
OUTSTR OF SAMPLE-MYOPERATION-ARGS

* check return arguments
DISPLAY "Return parameter returned equals "
RESULT OF SAMPLE-MYOPERATION-ARGS

* MYEXCEPTION rasied by the server
WHEN D-SAMPLE-MYEXCEPTION

MOVE SPACES TO WS-EXCEPT-ID-STRING
*retrieve string value form the exception-id pointer

CALL "STRGET" USING EXCEPTION-ID OF
SAMPLE-USER-EXCEPTIONS
EX-SAMPLE-MYEXCEPTION-LENGTH
WS-EXCEPT-ID-STRING

DISPLAY "Exception id equals "
WS-EXCEPT-ID-STRING

*Check the values of the returned exception which
*in this example is a bounded string

DISPLAY "Exception value retuned "
EXCEPT-STR OF EXAMPLE-USER-EXCEPTIONS
CALL "STRFREE" EXCEPTION-ID OF SAMPLE-USER-EXCEPTIONS
SET WS-STRFREE TO TRUE
PERFORM CHECK-STATUS

* Initialize for the next ORBEXEC call
SET D-NO-USEREXCEPTION TO TRUE
END-EVALUATE.

Example 28:Using ORBEXEC in the Client Program (Sheet 2 of 2)
321

CHAPTER 8 | API Reference
Exceptions A CORBA::BAD_INV_ORDER::INTERFACE_NOT_REGISTERED exception is raised
if the client tries to invoke an operation on an interface that has not been
registered via ORBREG.

A CORBA::BAD_PARAM::INVALID_DISCRIMINATOR_TYPECODE exception is
raised if the discriminator typecode is invalid when marshalling a union
type.

A CORBA::BAD_PARAM::UNKNOWN_OPERATION exception is raised if the
operation is not valid for the interface.

A CORBA::BAD_PARAM::UNKNOWN_TYPECODE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.

A CORBA::DATA_CONVERSION::VALUE_OUT_OF_RANGE exception is raised if the
value is determined to be out of range when marshalling a long, short,
unsigned short, unsigned long, long long, or unsigned long long type.

See also ï �COAGET� on page 281.

ï �COAPUT� on page 286.

ï The BANK demonstration in orbixhlq.DEMOS.COBOL.SRC for a complete
example of how to use ORBEXEC.
 322

API Reference Details
ORBHOST

Synopsis ORBHOST(in 9(09) BINARY hostname-length,
out X(nn) hostname)

// Returns the hostname of the server

Usage Server-specific.

Description The ORBHOST function returns the hostname of the machine on which the
server is running.

Parameters The parameters for ORBEXEC can be described as follows:

Example The following is an example of how to use ORBHOST in a server program:

Note: This is only applicable if TCP/IP is being used on the host machine.

hostname-length This is an in parameter that specifies the length of
the hostname.

hostname This is an out parameter that is a bounded string
used to retrieve the hostname.

WORKING-STORAGE SECTION.
01 HOST-NAME PICTURE X(255).
01 HOST-NAME-LEN PICTURE 9(09) BINARY

VALUE 255.

PROCEDURE DIVISION.
…

CALL "ORBHOST" USING HOST-NAME-LENGTH
HOST-NAME.

SET WS-ORBHOST TO TRUE.
PERFORM CHECK-STATUS.
DISPLAY "Hostname equals " HOST-NAME
323

CHAPTER 8 | API Reference
Exceptions A CORBA::BAD_PARAM::LENGTH_TOO_SMALL exception is raised if the length of
the string containing the hostname is greater than the hostname-length
parameter.
 324

API Reference Details
ORBREG

Synopsis ORBREG(in buffer interface-description)
// Describes an IDL interface to the COBOL runtime.

Usage Common to clients and servers.

Description The ORBREG function registers an interface with the COBOL runtime, by using
the interface description that is stored in the idlmembernameX copybook
generated by the Orbix E2A IDL compiler. Each interface within the IDL
member has a 01 level, which is the parameter to be passed to the ORBREG
call.

The 0rbix 2000 IDL compiler generates a 01 level in the idlmembernameX
copybook for each interface in the IDL member. Each 01 level that is
generated fully describes the interface to the COBOL runtime; for example,
the interface name, what it inherits from, each operation, its parameters and
user exceptions, and all the associated typecodes. The idlmembernameX
copybook cannot be amended by the user, because doing so can cause
unpredictable results at runtime.

You must call ORBREG for every interface that the client or server uses.
However, it is to be called only once for each interface; therefore, you
should place the calls in the client and server mainline programs.

Parameters The parameter for ORBREG can be described as follows:

interface-descriptionThis is an in parameter that contains the address of
the interface definition, which is defined as a 01
level in the idlmembernameX copybook.
325

CHAPTER 8 | API Reference
Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the idlmembernameX copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

3. The following is an example of how to use ORBREG in a client or server
program:

// IDL
module Simple
{

interface SimpleObject
{

void
call_me();

};
};

01 SIMPLE-SIMPLEOBJECT-INTERFACE.
03 FILLER PIC X(160) VALUE X"0000005C00000058C9C4D37

- "AE2899497938561E28994979385D682918583A37AF14BF
- "000000000040000000EC9C4D37AE2899497938561E2899
- "4979385D682918583A37AF14BF0000000001E289949793
- "85D682918583A300FFFFFF00000004C9C4D37AE2899497
- "938561E28994979385D682918583A37AF14BF000000000
- "180000000000000001838193936D948500000000000000
- "00000000000000000000".

WORKING-STORAGE SECTION.

COPY SIMPLE.

PROCEDURE DIVISION.
* Register interface(s) after ORB initialization

DISPLAY "Registering the Interface".

CALL "ORBREG" USING
SIMPLE-SIMPLEOBJECT-INTERFACE.

SET WS-ORBREG TO TRUE.
PERFORM CHECK-STATUS
 326

API Reference Details
Exceptions A CORBA::BAD_INV_ORDER::INTERFACE_ALREADY_REGISTERED exception is
raised if the client or server attempts to register the same interface more
than once.
327

CHAPTER 8 | API Reference
ORBSRVR

Synopsis ORBSRVR(in X(nn) server-name,
in 9(09) BINARY server-name-length)

// Sets the server name for the current server process.

Usage Server-specific.

Description The ORBSRVR function sets the server name for the current server. This
should be contained in the server mainline program, and should be called
only once, after calling ORBARGS.

Parameters The parameters for ORBSRVR can be described as follows:

Example The following is an example of how to use ORBSRVR in a server program:

Exceptions A CORBA::BAD_INV_ORDER::SERVER_NAME_ALREADY_SET exception is raised if
ORBSRVR is called more than once.

server-name This is an in parameter that is a bounded string
containing the server name.

server-name-length This is an in parameter that specifies the length of
the string containing the server name.

WORKING-STORAGE SECTION.
01 SERVER-NAME PICTURE X(17) VALUE "simple_persistent".
01 SERVER-NAME-LEN PICTURE 9(09) BINARY VALUE 17.
…
PROCEDURE DIVISION.
…
* After ORBARGS call.

CALL "ORBSRVR" USING SERVER-NAME
SERVER-NAME-LEN.

SET WS-ORBSRVR TO TRUE.
PERFORM CHECK-STATUS.
 328

API Reference Details
ORBSTAT

Synopsis ORBSTAT(in buffer status-buffer)
// Registers the status information block.

Usage Common to both clients and servers.

Description The ORBSTAT function registers the supplied status information block to the
COBOL runtime. The status of any COBOL runtime call can then be
checked, for example, to test if a call has completed successfully.

The ORBIX-STATUS-INFORMATION structure is defined in the supplied CORBA
copybook. A CHKERRS (for batch) or CERRSMFA (for IMS or CICS) copybook is
also provided, which contains a CHECK-STATUS function that can be called
after each API call, to check if a system exception has occurred.
Alternatively, this can be modified or replaced for the system environment.

You should call ORBSTAT once, as the first API call, in your server mainline
and client programs. If it is not called, and an exception occurs at runtime,
the application terminates with the following message:

Parameters The parameters for ORBSTAT can be described as follows:

An exception has occurred but ORBSTAT has not been called.
Place the ORBSTAT API call in your application, compile and
rerun. Exiting now.

status-buffer This is an in parameter that contains a COBOL 01
level data item representing the status information
block defined in the CORBA copybook. This buffer is
populated when a CORBA system exception occurs
during subsequent API calls. Refer to �Definition of
status information block� for more details of how it
is defined.
329

CHAPTER 8 | API Reference
Definition of status information
block

ORBIX-STATUS-INFORMATION is defined in the CORBA copybook as follows:

Example 29:ORBIX-STATUS-INFORMATION Definition (Sheet 1 of 2)

*
** This data item must be originally set by calling the
** ORBSTAT api.
** This data item is then used to determine the status of
** each api called (eg COAGET, ORBEXEC).
**
** If the call was successful then CORBA-EXCEPTION and
** CORBA-MINOR-CODE will be both set to 0 and
** COMPLETION-STATUS-YES will be set to true.
**
** EXCEPTION-TEXT is a pointer to the text of the exception.
** STRGET must be used to extract this text.
** (Refer to CHKERRS or CERRSMFA Copybooks for more details).
*
01 ORBIX-STATUS-INFORMATION IS EXTERNAL.

03 CORBA-EXCEPTION PICTURE 9(5) BINARY.
88 CORBA-NO-EXCEPTION VALUE 0.
88 CORBA-UNKNOWN VALUE 1.
88 CORBA-BAD-PARAM VALUE 2.
88 CORBA-NO-MEMORY VALUE 3.
88 CORBA-IMP-LIMIT VALUE 4.
88 CORBA-COMM-FAILURE VALUE 5.
88 CORBA-INV-OBJREF VALUE 6.
88 CORBA-NO-PERMISSION VALUE 7.
88 CORBA-INTERNAL VALUE 8.
88 CORBA-MARSHAL VALUE 9.
88 CORBA-INITIALIZE VALUE 10.
88 CORBA-NO-IMPLEMENT VALUE 11.
88 CORBA-BAD-TYPECODE VALUE 12.
88 CORBA-BAD-OPERATION VALUE 13.
88 CORBA-NO-RESOURCES VALUE 14.
88 CORBA-NO-RESPONSE VALUE 15.
88 CORBA-PERSIST-STORE VALUE 16.
88 CORBA-BAD-INV-ORDER VALUE 17.
88 CORBA-TRANSIENT VALUE 18.
88 CORBA-FREE-MEM VALUE 19.
88 CORBA-INV-IDENT VALUE 20.
88 CORBA-INV-FLAG VALUE 21.
88 CORBA-INTF-REPOS VALUE 22.
88 CORBA-BAD-CONTEXT VALUE 23.
88 CORBA-OBJ-ADAPTER VALUE 24.
 330

API Reference Details
88 CORBA-DATA-CONVERSION VALUE 25.
88 CORBA-OBJECT-NOT-EXIST VALUE 26.
88 CORBA-TRANSACTION-REQUIRED VALUE 27.
88 CORBA-TRANSACTION-ROLLEDBACK VALUE 28.
88 CORBA-INVALID-TRANSACTION VALUE 29.
88 CORBA-INV-POLICY VALUE 30.
88 CORBA-REBIND VALUE 31.
88 CORBA-TIMEOUT VALUE 32.
88 CORBA-TRANSACTION-UNAVAILABLE VALUE 33.
88 CORBA-TRANSACTION-MODE VALUE 34.
88 CORBA-BAD-QOS VALUE 35.
88 CORBA-CODESET-INCOMPATIBLE VALUE 36.

03 COMPLETION-STATUS PICTURE 9(5) BINARY
88 COMPLETION-STATUS-YES VALUE 0.
88 COMPLETION-STATUS-NO VALUE 1.
88 COMPLETION-STATUS-MAYBE VALUE 2.

03 EXCEPTION-MINOR-CODE PICTURE S9(10) BINARY
03 EXCEPTION-NUMBER REDEFINES EXCEPTION-MINOR-CODE

PICTURE S9(10) BINARY.
03 EXCEPTION-TEXT USAGE IS POINTER

Example 29:ORBIX-STATUS-INFORMATION Definition (Sheet 2 of 2)
331

CHAPTER 8 | API Reference
Example The following is an example of how to use ORBSTAT in a server mainline or
client program:

Exceptions A CORBA::BAD_INV_ORDER::STAT_ALREADY_CALLED exception is raised if
ORBSTAT is called more than once with a different
ORBIX-STATUS-INFORMATION block.

WORKING-STORAGE SECTION.
COPY CORBA

…
PROCEDURE DIVISION.

CALL "ORBSTAT" USING ORBIX-STATUS-INFORMATION.

DISPLAY "Initializing the ORB".

CALL "ORBARGS" USING ARG-LIST
ARG-LIST-LEN
ORB-NAME
ORB-NAME-LEN.

SET WS-ORBARGS TO TRUE.
PERFORM CHECK-STATUS.

…
EXIT-PRG.

STOP RUN.
…
COPY CHKERRS.

Note: The COPY CHKERRS statement in the preceding example is used in
batch programs. It is replaced with COPY CERRSMFA in IMS or CICS server
programs.
 332

API Reference Details
ORBTIME

Synopsis ORBTIME(in 9(04) BINARY timeout-type
in 9(09) BINARY timeout-value)

// Used by clients for setting the call timeout.
// Used by servers for setting the event timeout.

Usage Common to clients and servers. (Batch only.)

Description The ORBTIME function provides:

ï Call timeout support to clients. This means that it specifies how long
before a client should be timed out after having established a
connection with a server. The value only comes into effect after the
connection has been established.

ï Event timeout support to servers. This means that it specifies how long
a server should wait between connection requests.

Parameters The parameters for ORBTIME can be described as follows:

timeout-type This is an in parameter that determines whether
call timeout or event timeout functionality is
required. It must be set to one of the two values
defined in the CORBA copybook for the
ORBIX-TIMEOUT-TYPE. In this case, value 1
corresponds to event timeout, and value 2
corresponds to call timeout.

timeout-value This is an in parameter that specifies the timeout
value in milliseconds.
333

CHAPTER 8 | API Reference
Server example On the server side, ORBTIME must be called immediately before calling
COARUN. After COARUN has been called, the event timeout value cannot be
changed. For example:

Client example On the client side, ORBTIME must be called before calling ORBEXEC. For
example:

Exceptions A CORBA::BAD_PARAM::INVALID_TIMEOUT_TYPE exception is raised if the
timeout-type parameter is not set to one of the two values defined for
ORBIX-TIMEOUT-TYPE in the CORBA copybook.

…
01 WS-TIMEOUT-VALUE PICTURE 9(09) BINARY VALUE 0.
…
PROCEDURE DIVISION.
…
*set the timeout value to two minutes
MOVE 120000 TO WS-TIMEOUT-VALUE
SET EVENT-TIMEOUT TO TRUE.
CALL "ORBTIME" USING ORBIX-TIMEOUT-TYPE

WS-TIMEOUT-VALUE.
SET WS-ORBTIME TO TRUE.
PERFORM CHECK-STATUS.
CALL "COARUN".
…

…
*set the timeout value to two minutes
MOVE 120000 TO WS-TIMEOUT-VALUE
SET CALL-TIMEOUT TO TRUE.
CALL "ORBTIME" USING ORBIX-TIMEOUT-TYPE

WS-TIMEOUT-VALUE.
SET WS-ORBTIME TO TRUE.
PERFORM CHECK-STATUS.
CALL "ORBEXEC" …
 334

API Reference Details
SEQALLOC

Synopsis SEQALLOC(in 9(09) BINARY sequence-size,
in X(nn) typecode-key,
in 9(09) BINARY typecode-key-length,
inout buffer sequence-control-data)

// Allocates memory for an unbounded sequence

Usage Common to clients and servers.

Description The SEQALLOC function allocates initial storage for an unbounded sequence.
You must call SEQALLOC before you call SEQSET for the first time. The length
supplied to the function is the initial sequence size requested. The typecode
supplied to SEQALLOC must be the sequence typecode.

Parameters The parameters for SEQALLOC can be described as follows:

Note: You can use SEQALLOC only on unbounded sequences.

sequence-size This is an in parameter that specifies the maximum
expected size of the sequence.

typecode-key This is an in parameter that contains a 01 level
data item representing the typecode key, as defined
in the idlmembername copybook generated by the
Orbix E2A IDL compiler. This is a bounded string.

typecode-key-length This is an in parameter that specifies the length of
the typecode key, as defined in the idlmembername
copybook generated by the Orbix E2A IDL compiler.

sequence-control-dataThis is an inout parameter that contains the
unbounded sequence control data.

Note: The typecode keys are defined as level 88 data items in the
idlmembername copybook generated by the Orbix E2A IDL compiler.
335

CHAPTER 8 | API Reference
Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

// IDL
interface example
{

typedef sequence<long> unboundedseq;
unboundedseq myop();

};

Example 30:The idlmembername Copybook (Sheet 1 of 2)

* Operation: myop
* Mapped name: myop
* Arguments: None
* Returns: example/unboundedseq
* User Exceptions: none

01 EXAMPLE-MYOP-ARGS.

03 RESULT-1.
05 RESULT PICTURE S9(10) BINARY.

03 RESULT-SEQUENCE.
05 SEQUENCE-MAXIMUM PICTURE 9(09) BINARY

VALUE 0.
05 SEQUENCE-LENGTH PICTURE 9(09) BINARY

VALUE 0.
05 SEQUENCE-BUFFER POINTER

VALUE NULL.
05 SEQUENCE-TYPE POINTER

VALUE NULL.

*
* Operation List section
* This lists the operations and attributes which an
* interface supports
*
**
01 EXAMPLE-OPERATION PICTURE X(21).
 336

API Reference Details
3. The following is an example of how to use SEQALLOC in a client or
server program:

88 EXAMPLE-MYOP VALUE
"myop:IDL:example:1.0".

01 EXAMPLE-OPERATION-LENGTH PICTURE 9(09) BINARY
VALUE 21.

*
* Typecode section
* This contains CDR encodings of necessary typecodes.
*
**
01 EXAMPLE-TYPE PICTURE X(28).

COPY CORBATYP.
88 EXAMPLE-UNBOUNDEDSEQ VALUE

"IDL:example/unboundedseq:1.0".
88 EXAMPLE VALUE

"IDL:example:1.0".
01 EXAMPLE-TYPE-LENGTH PICTURE S9(09)

BINARY VALUE 28.

Example 30:The idlmembername Copybook (Sheet 2 of 2)

Example 31:Using SEQALLOC in Client or Server (Sheet 1 of 2)

WORKING-STORAGE SECTION.
01 WS-MAX-ELEMENTS PICTURE 9(09) BINARY

VALUE 10.
01 WS-CURRENT-ELEMENT PICTURE 9(09) BINARY

VALUE 0.
DO-EXAMPLE-MYOP.

CALL "COAGET" USING EXAMPLE-MYOP-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* initialize the maximum and length fields.

* MOVE WS-MAX-ELEMENTS TO SEQUENCE-MAXIMUM OF
MOVE 0 TO SEQUENCE-MAXIMUM OF

EXAMPLE-MYOP-ARGS.
MOVE 0 TO SEQUENCE-LENGTH OF

EXAMPLE-MYOP-ARGS.

* Initialize the sequence element data
MOVE 0 TO RESULT OF

RESULT-1 OF
337

CHAPTER 8 | API Reference
Exceptions A CORBA::NO_MEMORY exception is raised if there is not enough memory
available to complete the request. In this case, the pointer will contain a null
value.

A CORBA::BAD_PARAM::INVALID_SEQUENCE exception is raised if the sequence
has not been set up correctly.

See also ï �SEQFREE� on page 344.

ï �Unbounded Sequences and Memory Management� on page 385.

EXAMPLE-MYOP-ARGS.
* set the typecode of the sequence

SET EXAMPLE-UNBOUNDEDSEQ TO TRUE.
* Allocate memory for the unbounded sequence.
* NOTE: SEQUENCE-MAXIMUM is set to WS-MAX-ELEMENTS after
* SEQALLOC call

CALL "SEQALLOC" USING WS-MAX-ELEMENTS
EXAMPLE-TYPE
EXAMPLE-TYPE-LENGTH
RESULT-SEQUENCE OF
EXAMPLE-MYOP-ARGS.

SET WS-SEQALLOC TO TRUE.
PERFORM CHECK-STATUS.

* Now ready to populate the seqeunce see SEQSET

* Check Errors Copybook
**

COPY CHKERRS.

Note: The COPY CHKERRS statement in the preceding example is used in
batch programs. It is replaced with COPY CERRSMFA in IMS or CICS server
programs.

Example 31:Using SEQALLOC in Client or Server (Sheet 2 of 2)
 338

API Reference Details
SEQDUP

Synopsis SEQDUP(in buffer sequence-control-data,
out buffer dupl-seq-control-data)

// Duplicates an unbounded sequence control block.

Usage Common to clients and servers.

Description The SEQDUP function creates a copy of an unbounded sequence. The new
sequence has the same attributes as the original sequence. The sequence
data is copied into a newly allocated buffer. The program owns this
allocated buffer. When this buffer is no longer required, you must call
SEQFREE to free the memory allocated to it.

You can call SEQDUP only on unbounded sequences.

Parameters The parameters for SEQDUP can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

sequence-control-dataThis is an in parameter that contains the
unbounded sequence control data.

dupl-seq-control-dataThis is an out parameter that contains the
duplicated unbounded sequence control data block.

interface example
{

typedef sequence<long> unboundedseq;
unboundedseq myop();

};
339

CHAPTER 8 | API Reference
2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 32:The idlmembername Copybook (Sheet 1 of 2)

* Operation: myop
* Mapped name: myop
* Arguments: None
* Returns: example/unboundedseq
* User Exceptions: none

01 EXAMPLE-MYOP-ARGS.

03 RESULT-1.
05 RESULT PICTURE S9(10) BINARY.

03 RESULT-SEQUENCE.
05 SEQUENCE-MAXIMUM PICTURE 9(09) BINARY

VALUE 0.
05 SEQUENCE-LENGTH PICTURE 9(09) BINARY

VALUE 0.
05 SEQUENCE-BUFFER POINTER

VALUE NULL.
05 SEQUENCE-TYPE POINTER

VALUE NULL.

*
* Operation List section
* This lists the operations and attributes which an
* interface supports
*

01 EXAMPLE-OPERATION PICTURE X(21).
88 EXAMPLE-MYOP VALUE

"myop:IDL:example:1.0".
01 EXAMPLE-OPERATION-LENGTH PICTURE 9(09) BINARY

VALUE 21.

*
* Typecode section
* This contains CDR encodings of necessary typecodes.
*
**
 340

API Reference Details
3. The following is an example of how to use SEQDUP in a client or server
program:

01 EXAMPLE-TYPE PICTURE X(28).
COPY CORBATYP.
88 EXAMPLE-UNBOUNDEDSEQ VALUE

"IDL:example/unboundedseq:1.0".
88 EXAMPLE VALUE

"IDL:example:1.0".
01 EXAMPLE-TYPE-LENGTH PICTURE S9(09) BINARY

VALUE 28.

Example 32:The idlmembername Copybook (Sheet 2 of 2)

Example 33:Using SEQDUP in Client or Server (Sheet 1 of 2)

WORKING-STORAGE SECTION.
01 WS-CURRENT-ELEMENT PICTURE 9(09) BINARY

VALUE 0.
01 WS-ARGS.

03 COPIED-1.
05 COPIED-VALUE PICTURE S9(10) BINARY.

03 COPIED-SEQUENCE.
05 SEQUENCE-MAXIMUM PICTURE 9(09) BINARY

VALUE 0.
05 SEQUENCE-LENGTH PICTURE 9(09) BINARY

VALUE 0.
05 SEQUENCE-BUFFER POINTER

VALUE NULL.
05 SEQUENCE-TYPE POINTER

VALUE NULL.

PROCEDURE DIVISION.

CALL "ORBEXEC" USING EXAMPLE-OBJ
EXAMPLE-OPERATION
EXAMPLE-MYOP-ARGS
EXAMPLE-USER-EXCEPTIONS.

SET WS-ORBEXEC TO TRUE.
PERFORM CHECK-STATUS.
* Make a copy of the unbounded sequence
CALL "SEQDUP" USING RESULT-SEQUENCE OF

EXAMPLE-MYOP-ARGS
COPIED-SEQUENCE OF
WS-ARGS.

SET WS-SEQDUP TO TRUE.
341

CHAPTER 8 | API Reference
PERFORM CHECK-STATUS.

* Release the memory allocated by SEQALLOC
* Refer to memory management chapter on when to call this
* api. * NOTE: The SEQUENCE-MAXIMUM and SEQUENCE-LENGTH
* are not initialized.

CALL "SEQFREE" USING RESULT-SEQUENCE OF
EXAMPLE-MYOP-ARGS.

SET WS-SEQFREE TO TRUE.
PERFORM CHECK-STATUS.

* Get each of the 10 elements in the copied sequence.
PERFORM VARYING WS-CURRENT-ELEMENT

FROM 1 BY 1 UNTIL
WS-CURRENT-ELEMENT >
SEQUENCE-LENGTH OF
WS-ARGS

* Get the current element in the copied sequence
CALL "SEQGET" USING COPIED-SEQUENCE OF

WS-ARGS
WS-CURRENT-ELEMENT
COPIED-VALUE OF
COPIED-1 OF
WS-ARGS

SET WS-SEQGET TO TRUE
PERFORM CHECK-STATUS
DISPLAY "Element data value equals "

COPIED-VALUE OF
COPIED-1 OF
WS-ARGS

END-PERFORM.

EXIT-PRG.
=========.
STOP RUN.

* Check Errors Copybook

COPY CHKERRS.

Example 33:Using SEQDUP in Client or Server (Sheet 2 of 2)
 342

API Reference Details
Exceptions A CORBA::BAD_PARAM::INVALID_SEQUENCE exception is raised if the sequence
has not been set up correctly.

See also ï �SEQFREE� on page 344.

ï �Unbounded Sequences and Memory Management� on page 385.

Note: The COPY CHKERRS statement in the preceding example is used in
batch programs. It is replaced with COPY CERRSMFA in IMS or CICS server
programs.
343

CHAPTER 8 | API Reference
SEQFREE

Synopsis SEQFREE(inout buffer sequence-control-data)
// Frees the memory allocated to an unbounded sequence.

Usage Common to clients and servers.

Description The SEQFREE function releases storage assigned to an unbounded sequence.
(Storage is assigned to a sequence by calling SEQALLOC.) Do not try to use
the sequence again after freeing its memory, because doing so might result
in a runtime error.

You can use SEQFREE only on unbounded sequences. Refer to the �Memory
Handling� on page 383 for details of when it should be called.

Parameters The parameter for SEQFREE can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

sequence-control-data This is an inout parameter that contains the
unbounded sequence control data.

// IDL
interface example
{

typedef sequence<long> unboundedseq;
unboundedseq myop();

};
 344

API Reference Details
2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 34:The idlmembername Copybook (Sheet 1 of 2)

* Operation: myop
* Mapped name: myop
* Arguments: None
* Returns: example/unboundedseq
* User Exceptions: none

01 EXAMPLE-MYOP-ARGS.

03 RESULT-1.
05 RESULT PICTURE S9(10) BINARY.

03 RESULT-SEQUENCE.
05 SEQUENCE-MAXIMUM PICTURE 9(09) BINARY

VALUE 0.
05 SEQUENCE-LENGTH PICTURE 9(09) BINARY

VALUE 0.
05 SEQUENCE-BUFFER POINTER

VALUE NULL.
05 SEQUENCE-TYPE POINTER

VALUE NULL.

*
* Operation List section
* This lists the operations and attributes which an
* interface supports
*
**
01 EXAMPLE-OPERATION PICTURE X(21).

88 EXAMPLE-MYOP VALUE
"myop:IDL:example:1.0".

01 EXAMPLE-OPERATION-LENGTH PICTURE 9(09) BINARY
VALUE 21.

*
* Typecode section
* This contains CDR encodings of necessary typecodes.
*
**
01 EXAMPLE-TYPE PICTURE X(28).
345

CHAPTER 8 | API Reference
3. The following is an example of how to use SEQFREE in a client or server
program:

See also �Unbounded Sequences and Memory Management� on page 385.

COPY CORBATYP.
88 EXAMPLE-UNBOUNDEDSEQ VALUE

"IDL:example/unboundedseq:1.0".
88 EXAMPLE VALUE

"IDL:example:1.0".
01 EXAMPLE-TYPE-LENGTH PICTURE S9(09)

BINARY VALUE 28.

Example 34:The idlmembername Copybook (Sheet 2 of 2)

WORKING-STORAGE SECTION.
01 WS-MAX-ELEMENTS PICTURE 9(09) BINARY

VALUE 10.
01 WS-CURRENT-ELEMENT PICTURE 9(09) BINARY

VALUE 0.

* Release the memory allocated by SEQALLOC
* Refer to memory management chapter on when to call this
* api.
* NOTE: The SEQUENCE-MAXIMUM and SEQUENCE-LENGTH are
* not initialized.

CALL "SEQFREE" USING RESULT-SEQUENCE OF
EXAMPLE-MYOP-ARGS.

SET WS-SEQFREE TO TRUE.
PERFORM CHECK-STATUS.

**
* Check Errors Copybook
**

COPY CHKERRS.

Note: The COPY CHKERRS statement in the preceding example is used in
batch programs. It is replaced with COPY CERRSMFA in IMS or CICS server
programs.
 346

API Reference Details
SEQGET

Synopsis SEQGET(in sequence sequence-control-data,
in 9(09) BINARY element-number,
out buffer sequence-data)

// Retrieves the specified element from an unbounded sequence.

Usage Common to clients and servers.

Description The SEQGET function provides access to a specific element of an unbounded
sequence. The data is copied from the specified element into the supplied
data area (that is, into the sequence-data parameter).

You can use SEQGET only on unbounded sequences.

Parameters The parameter for SEQGET can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

sequence-control-data This is an in parameter that contains the
unbounded sequence control data.

element-number This is an in parameter that specifies the index of
the element number to be retrieved.

sequence-data This is an out parameter that contains the buffer to
which the sequence data is to be copied.

// IDL
interface example
{

typedef sequence<long> unboundedseq;
unboundedseq myop();

};
347

CHAPTER 8 | API Reference
2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 35:The idlmembername Copybook (Sheet 1 of 2)

* Operation: myop
* Mapped name: myop
* Arguments: None
 348

API Reference Details
3. The following is an example of how to use SEQGET in a client or server
program:

Exceptions A CORBA::BAD_PARAM::INVALID_SEQUENCE exception is raised if the sequence
has not been set up correctly.

A CORBA::BAD_PARAM::INVALID_BOUNDS exception is raised if the element to
be accessed is either set to 0 or greater than the current length.

88 EXAMPLE-UNBOUNDEDSEQ VALUE
"IDL:example/unboundedseq:1.0".

88 EXAMPLE VALUE
"IDL:example:1.0".

01 EXAMPLE-TYPE-LENGTH PICTURE S9(09)
BINARY VALUE 28.

Example 35:The idlmembername Copybook (Sheet 2 of 2)

WORKING-STORAGE SECTION.
01 WS-MAX-ELEMENTS PICTURE 9(09) BINARY

VALUE 10.
01 WS-CURRENT-ELEMENT PICTURE 9(09) BINARY

VALUE 0.

CALL "ORBEXEC" USING EXAMPLE-OBJ
EXAMPLE-OPERATION
EXAMPLE-MYOP-ARGS
EXAMPLE-USER-EXCEPTIONS.

SET WS-ORBEXEC TO TRUE.
PERFORM CHECK-STATUS.
* Get each of the 10 elements in the sequence.
PERFORM VARYING WS-CURRENT-ELEMENT

FROM 1 BY 1 UNTIL
WS-CURRENT-ELEMENT >
SEQUENCE-LENGTH OF
EXAMPLE-MYOP-ARGS

* Get the current element
CALL "SEQGET" USING RESULT-SEQUENCE OF

EXAMPLE-MYOP-ARGS
WS-CURRENT-ELEMENT
RESULT OF
RESULT-1 OF
EXAMPLE-MYOP-ARGS

SET WS-SEQGET TO TRUE
349

CHAPTER 8 | API Reference
SEQSET

Synopsis SEQSET(out buffer sequence-control-data,
in 9(09) BINARY element-number,
in buffer sequence-data)

// Places the specified data into the specified element of an
// unbounded sequence.

Usage Common to clients and servers.

Description The SEQSET function copies the supplied data into the requested element of
an unbounded sequence. You can set any element ranging between 1 and
the maximum size of a sequence plus one. If the current maximum element
plus one is set, the sequence is then reallocated, to hold the enlarged
sequence.

Parameters The parameters for SEQSET can be described as follows:

Example 1. Consider the following IDL:

Note: You can call SEQSET only on unbounded sequences.

sequence-control-data This is an in parameter that contains the
unbounded sequence control data.

element-number This is an in parameter that specifies the index of
the element number that is to be set.

sequence-data This is an in parameter that contains the address
of the buffer containing the data that is to be
placed in the sequence.

// IDL
interface example
{

typedef sequence<long> unboundedseq;
unboundedseq myop();

};
 350

API Reference Details
2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 36:The idlmembername Copybook (Sheet 1 of 2)

* Operation: myop
* Mapped name: myop
* Arguments: None
* Returns: example/unboundedseq
* User Exceptions: none

01 EXAMPLE-MYOP-ARGS.

03 RESULT-1.
05 RESULT PICTURE S9(10) BINARY.

03 RESULT-SEQUENCE.
05 SEQUENCE-MAXIMUM PICTURE 9(09) BINARY

VALUE 0.
05 SEQUENCE-LENGTH PICTURE 9(09) BINARY

VALUE 0.
05 SEQUENCE-BUFFER POINTER

VALUE NULL.
05 SEQUENCE-TYPE POINTER

VALUE NULL.

*
* Operation List section
* This lists the operations and attributes which an
* interface supports
*
**
01 EXAMPLE-OPERATION PICTURE X(21).

88 EXAMPLE-MYOP VALUE
"myop:IDL:example:1.0".

01 EXAMPLE-OPERATION-LENGTH PICTURE 9(09) BINARY
VALUE 21.

*
* Typecode section
* This contains CDR encodings of necessary typecodes.
*
**
01 EXAMPLE-TYPE PICTURE X(28).
COPY CORBATYP.
351

CHAPTER 8 | API Reference
3. The following is an example of how to use SEQSET in a client or server
program:

88 EXAMPLE-UNBOUNDEDSEQ VALUE
"IDL:example/unboundedseq:1.0".

88 EXAMPLE VALUE
"IDL:example:1.0".

01 EXAMPLE-TYPE-LENGTH PICTURE S9(09)
BINARY VALUE 28.

Example 36:The idlmembername Copybook (Sheet 2 of 2)

Example 37:Using SEQSET in Client or Server (Sheet 1 of 2)

WORKING-STORAGE SECTION.
01 WS-MAX-ELEMENTS PICTURE 9(09) BINARY

VALUE 10.
01 WS-CURRENT-ELEMENT PICTURE 9(09) BINARY

VALUE 0.

DO-EXAMPLE-MYOP.
CALL "COAGET" USING EXAMPLE-MYOP-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

* initialize the maximum and length fields.

* MOVE WS-MAX-ELEMENTS TO SEQUENCE-MAXIMUM OF
MOVE 0 TO SEQUENCE-MAXIMUM OF

EXAMPLE-MYOP-ARGS.
MOVE 0 TO SEQUENCE-LENGTH OF

EXAMPLE-MYOP-ARGS.

* Initialize the sequence element data
MOVE 0 TO RESULT OF

RESULT-1 OF
EXAMPLE-MYOP-ARGS.

* set the typecode of the sequence
SET EXAMPLE-UNBOUNDEDSEQ TO TRUE.

* Allocate memory for the unbounded sequence.
* NOTE: SEQUENCE-MAXIMUM is set to WS-MAX-ELEMENTS
* after SEQALLOC call.

CALL "SEQALLOC" USING WS-MAX-ELEMENTS
EXAMPLE-TYPE
EXAMPLE-TYPE-LENGTH
RESULT-SEQUENCE OF
EXAMPLE-MYOP-ARGS.
 352

API Reference Details
SET WS-SEQALLOC TO TRUE.
PERFORM CHECK-STATUS.

* Set each of the 10 elements in the sequence.
PERFORM VARYING WS-CURRENT-ELEMENT

FROM 1 BY 1 UNTIL
WS-CURRENT-ELEMENT >
SEQUENCE-MAXIMUM OF
EXAMPLE-MYOP-ARGS

* initialize the element data
ADD 2 TO RESULT OF

RESULT-1 OF
EXAMPLE-MYOP-ARGS

DISPLAY "Element data value equals "
RESULT OF
RESULT-1 OF
EXAMPLE-MYOP-ARGS

* Set the current element to the element data buffer
* NOTE: SEQUENCE-LENGTH is incremented on each seqset

CALL "SEQSET" USING RESULT-SEQUENCE OF
EXAMPLE-MYOP-ARGS
WS-CURRENT-ELEMENT
RESULT OF
RESULT-1 OF
EXAMPLE-MYOP-ARGS

SET WS-SEQSET TO TRUE
PERFORM CHECK-STATUS
END-PERFORM.

CALL "COAPUT" USING EXAMPLE-MYOP-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

**
* Check Errors Copybook

COPY CHKERRS.

Note: The COPY CHKERRS statement in the preceding example is used in
batch programs. It is replaced with COPY CERRSMFA in IMS or CICS server
programs.

Example 37:Using SEQSET in Client or Server (Sheet 2 of 2)
353

CHAPTER 8 | API Reference
Exceptions A CORBA::BAD_PARAM::INVALID_SEQUENCE exception is raised if the sequence
has not been set up correctly.

A CORBA::BAD_PARAM::INVALID_BOUNDS exception is raised if the element to
be accessed is either set to 0 or greater than the current length.
 354

API Reference Details
STRFREE

Synopsis STRFREE(in POINTER string-pointer)
// Frees the memory allocated to a bounded string.

Usage Common to clients and servers.

Description The STRFREE function releases dynamically allocated memory for an
unbounded string, via a pointer that was originally obtained by calling
STRSET. Do not try to use the unbounded string after freeing it, because
doing so might result in a runtime error. Refer to �Memory Handling� on
page 383 for more details.

Parameters The parameters for STRFREE can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

string-pointer This is an in parameter that is the unbounded string
pointer containing a copy of the bounded string.

interface sample {
typedef string astring;
attribute astring mystring;

};
355

CHAPTER 8 | API Reference
2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

3. The following is an example of how to use STRFREE in a client or server
program:

See also �STRSET� on page 362.

* Attribute: mystring
* Mapped name: mystring
* Type: sample/astring (read/write)

01 SAMPLE-MYSTRING-ARGS.
03 RESULT POINTER

VALUE NULL.

PROCEDURE DIVISION.
…

* note the string pointer will have been set
* by a call to STRSET/STRSETP

CALL "STRFREE" USING RESULT OF SAMPLE-MYSTRING-ARGS.

DISPLAY "The memory is now released".
 356

API Reference Details
STRGET

Synopsis STRGET(in POINTER string-pointer,
in 9(09) BINARY string-length,
out X(nn) string)

// Copies the contents of an unbounded string to a bounded string.

Usage Common to clients and servers.

Description The STRGET function copies the characters in the unbounded string pointer,
string-pointer, to the string item. If the string-pointer parameter does
not contain enough characters to exactly fill the target string, the target
string is terminated by a space. If there are too many characters in the
string-pointer, the excess characters are not copied to the target string.

The number of characters copied depends on the length parameter. This
must be a valid positive integer (that is, greater than zero); otherwise, a
runtime error occurs. If the X(nn) data item is shorter than the length field,
the string is still copied, but obviously cannot contain the intended string.

Parameters The parameters for STRGET can be described as follows:

Note: Null characters are never copied from the string-pointer to the
target string.

string-pointerThis is an in parameter that is the unbounded string pointer
containing a copy of the unbounded string.

string-length This is an in parameter that specifies the length of the
unbounded string.

string This is an out parameter that is a bounded string to which
the contents of the string pointer are copied. This string is
terminated by a space if it is larger than the contents of the
string pointer.
357

CHAPTER 8 | API Reference
Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

// IDL
interface sample
{

typedef string astring;
attribute astring mystring;

};

* Attribute: mystring
* Mapped name: mystring
* Type: sample/astring (read/write)

01 SAMPLE-MYSTRING-ARGS.
03 RESULT POINTER

VALUE NULL.
 358

API Reference Details
3. The following is an example of how to use STRGET in a client or server
program:

WORKING-STORAGE SECTION.

01 WS-BOUNDED-STRING PICTURE X(20) VALUE SPACES.
01 WS-BOUNDED-STRING-LEN PICTURE 9(09) BINARY VALUE 20.

PROCEDURE DIVISION.

* note the string pointer will have been set
* by a call to STRSET/STRSETP

…
CALL "STRGET" USING RESULT OF MYSTRING-ARGS

WS-BOUNDED-STRING-LEN
WS-BOUNDED-STRING.

SET WS-STRGET TO TRUE.
PERFORM CHECK-STATUS.
DISPLAY "Bounded string now retrieved and value equals "

WS-BOUNDED-STRING.
359

CHAPTER 8 | API Reference
STRLEN

Synopsis STRLEN(in POINTER string-pointer,
out 9(09) BINARY string-length)

// Returns the actual length of an unbounded string.

Usage Common to clients and servers.

Description The STRLEN function returns the number of characters in an unbounded
string.

Parameters The parameters for STRLEN can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

string-pointerThis is an in parameter that is the unbounded string pointer
containing the unbounded string.

string-length This is an out parameter that is used to retrieve the actual
length of the string that the string-pointer contains.

// IDL
interface sample
{

typedef string astring;
attribute astring mystring;

};
 360

API Reference Details
2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

3. The following is an example of how to use STRLEN in a client or server
program:

* Attribute: mystring
* Mapped name: mystring
* Type: sample/astring (read/write)

01 SAMPLE-MYSTRING-ARGS.
03 RESULT POINTER

VALUE NULL.

WORKING-STORAGE SECTION.

01 WS-BOUNDED-STRING-LEN PICTURE 9(09) BINARY VALUE 0.

PROCEDURE DIVISION.
...

* note the string pointer will have been set
* by a call to STRSET/STRSETP

CALL "STRLEN" USING RESULT OF MYSTRING-ARGS
WS-BOUNDED-STRING-LEN.

DISPLAY "The String length equals set".
WS-BOUNDED-STRING-LEN
361

CHAPTER 8 | API Reference
STRSET

Synopsis STRSET(out POINTER string-pointer,
in 9(09) BINARY string-length,
in X(nn) string)

// Creates a dynamic string from a PIC X(n) data item

Usage Common to clients and servers

Description The STRSET function creates an unbounded string to which it copies the
number of characters specified in length from the bounded string specified
in string. If the bounded string contains trailing spaces, these are not
copied to the target unbounded string whose memory location is specified
by string-pointer.

The STRSETP version of this function is identical, except that it does copy
trailing spaces. You can use the STRFREE to subsequently free this allocated
memory.

The number of characters copied depends on the length parameter. This
must be a valid positive integer (that is, greater than zero); otherwise, a
runtime error occurs. If the X(nn) data item is shorter than the length field,
the string is still copied, but obviously cannot contain the intended string.

Parameters The parameters for STRSET can be described as follows:

Note: STRSET allocates memory for the string from the program heap at
runtime. Refer to �STRFREE� on page 355 and �Unbounded Strings and
Memory Management� on page 389 for details of how this memory is
subsequently released.

string-pointerThis is an out parameter to which the unbounded string is
copied.

string-length This is an in parameter that specifies the number of
characters to be copied from the bounded string specified in
string.
 362

API Reference Details
Example The example can be broken down as follows:

1. Consider the following IDL:

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

string This is an in parameter containing the bounded string that
is to be copied. This string is terminated by a space if it is
larger than the contents of the target string pojnter. If the
bounded string contains trailing spaces, they are not copied.

// IDL
interface sample
{

typedef string astring;
attribute astring mystring;

};

* Attribute: mystring
* Mapped name: mystring
* Type: sample/astring (read/write)

01 SAMPLE-MYSTRING-ARGS.
03 RESULT POINTER

VALUE NULL.
363

CHAPTER 8 | API Reference
3. The following is an example of how to use STRSET in a client or server
program:

See also ï �STRFREE� on page 355.

ï �Unbounded Strings and Memory Management� on page 389.

WORKING-STORAGE SECTION.

01 WS-BOUNDED-STRING PICTURE X(20) VALUE SPACES.
01 WS-BOUNDED-STRING-LEN PICTURE 9(09) BINARY VALUE 20.

PROCEDURE DIVISION.
...

* Note trailing spaces are not copied.
MOVE "JOE BLOGGS" TO WS-BOUNDED-STRING.
CALL "STRSET" USING RESULT OF SAMPLE-MYSTRING-ARGS

WS-BOUNDED-STRING-LEN
WS-BOUNDED-STRING.

SET WS-STRSET TO TRUE.
PERFORM CHECK-STATUS.

DISPLAY "String pointer is now set".
 364

API Reference Details
STRSETP

Synopsis STRSETP(out POINTER string-pointer,
in 9(09) BINARY string-length,
in X(nn) string)

// Creates a dynamic string from a PIC X(n) data item.

Usage Common to clients and servers.

Description The STRSETP function is exactly the same as STRSET, except that STRSETP
does copy trailing spaces to the unbounded string. Refer to �STRSET� on
page 362 for more details.

Example The example can be broken down as follows

1. Consider the following IDL:

Note: STRSETP allocates memory for the string from the program heap at
runtime. Refer to �STRFREE� on page 355 and �Unbounded Strings and
Memory Management� on page 389 for details of how this memory is
subsequently released.

//IDL
interface sample
{

typedef string astring;
attribute astring mystring;

};
365

CHAPTER 8 | API Reference
2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

3. The following is an example of how to use STRSETP in a client or server
program:

See also ï �STRFREE� on page 355.

ï �Unbounded Strings and Memory Management� on page 389.

* Attribute: mystring
* Mapped name: mystring
* Type: sample/astring (read/write)

01 SAMPLE-MYSTRING-ARGS.
03 RESULT POINTER

VALUE NULL.

WORKING-STORAGE SECTION.

01 WS-BOUNDED-STRING PICTURE X(20) VALUE SPACES.
01 WS-BOUNDED-STRING-LEN PICTURE 9(09) BINARY VALUE 20.

PROCEDURE DIVISION.
…

* Note trailing spaces are copied.
MOVE "JOE BLOGGS" TO WS-BOUNDED-STRING.
CALL "STRSETP" USING RESULT OF MYSTRING-ARGS

WS-BOUNDED-STRING-LEN
WS-BOUNDED-STRING.

SET WS-STRSETP TO TRUE.
PERFORM CHECK-STATUS.

DISPLAY "String pointer is now set".
 366

API Reference Details
STRTOOBJ

Synopsis STRTOOBJ(in POINTER object-string,
out POINTER object-reference)

// Creates an object reference from an interoperable object
// reference (IOR).

Usage Common to clients and servers.

Description The STRTOOBJ function creates an object reference from a stringfied IOR, by
calling the ORB::string_to_object() C++ function.

A stringified interoperable object reference is of the form:

You can use the supplied iordump utility to parse the IOR. The iordump
utility is available with Orbix E2A in UNIX System Services.

Parameters The parameters for STRTOOBJ can be described as follows:

IOR:010000001c00000049444c3a53696d706c652f53696d706c654f626a6563
743a312e300001000000000000007e000000010102000a0000006a7578746
1706f736500e803330000003a3e023231096a75787461706f73651273696d
706c655f70657273697374656e7400106d795f73696d706c655f6f626a656
3740002000000010000001800000001000000010001000000000000010100
01000000090101000600000006000000010000002100

object-string This is an in parameter that contains a pointer to the
address in memory where the interoperable object
reference is held.

object-reference This is an out parameter that contains a pointer to the
address in memory where the returned object reference
is held.
367

CHAPTER 8 | API Reference
Example The following is an example of how to use STRTOOBJ in a client or server
program:

See also �OBJTOSTR� on page 312.

WORKING-STORAGE SECTION.
* Normally not stored in Working storage - this is just for

demonstration.
01 WS-SIMPLE-IOR PIC X(2048) VALUE

"IOR:010000001c00000049444c3a53696d706c652f53696d706c654f626a
6563743a312e300001000000000000007e000000010102000a0000006a757
87461706f736500e803330000003a3e023231096a75787461706f73651273
696d706c655f70657273697374656e7400106d795f73696d706c655f6f626
a656374000200000001000000180000000100000001000100000000000001
010001000000090101000600000006000000010000002100"

01 WS-SIMPLE-SIMPLEOBJECT POINTER VALUE NULL.

* Set the COBOL pointer to point to the IOR string
* Normally read from a file

CALL "STRSET" USING IOR-REC-PTR
IOR-REC-LEN
WS-SIMPLE-IOR.

SET WS-STRSET TO TRUE.
PERFORM CHECK-STATUS.

* Obtain object reference from the IOR
CALL "STRTOOBJ" USING IOR-REC-PTR

WS-SIMPLE-SIMPLEOBJECT

SET WS-STRTOOBJ TO TRUE.
PERFORM CHECK-STATUS.
 368

API Reference Details
TYPEGET

Synopsis TYPEGET(inout POINTER any-pointer,
in 9(09) BINARY typecode-key-length,
out X(nn) typecode-key)

// Extracts the type name from an any.

Usage Common to clients and servers.

Description The TYPEGET function returns the typecode of the value of the any. You can
then use the typecode to ensure that the correct buffer is passed to the
ANYGET function for extracting the value of the any.

Parameters The parameters for TYPEGET can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

any-pointer This is an inout parameter that is a pointer to the
address in memory where the any is stored.

typecode-key-length This is an in parameter that specifies the length of
the typecode key, as defined in the idlmembername
copybook generated by the Orbix E2A IDL compiler.

typecode-key This is an out parameter that contains a 01 level
data item to which the typecode key is copied. This
is defined in the idlmembername copybook generated
by the Orbix E2A IDL compiler. This is a bounded
string.

// IDL
interface sample
{

attribute any myany;
};
369

CHAPTER 8 | API Reference
2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code code in the idlmembername copybook (where
idlmembername represents the (possibly abbreviated) name of the IDL
member that contains the IDL definitions):

3. The following is an example of how to use TYPEGET in a client or server
program:

Exceptions A CORBA::BAD_INV_ORDER::TYPESET_NOT_CALLED exception is raised if the
typecode of the any has not been set via TYPESET.

01 SAMPLE-MYANY-ARGS.
03 RESULT POINTER

VALUE NULL.
…
01 EXAMPLE-TYPE PICTURE X(15).

COPY CORBATYP.
88 SAMPLE VALUE

"IDL:sample:1.0".
01 EXAMPLE-TYPE-LENGTH PICTURE S9(09) BINARY

VALUE 22.

WORKING-STORAGE SECTION.
01 WS-DATA PIC S9(5) VALUE 0.

CALL "TYPEGET" USING RESULT OF SAMPLE-MYANY-ARGS
EXAMPLE-TYPE-LENGTH
EXAMPLE-TYPE.

SET WS-TYPEGET TO TRUE.
PERFORM CHECK-STATUS.
* validate typecode
EVALUATE TRUE

WHEN CORBA-TYPE-SHORT
*retrieve the ANY CORBA::Short value

CALL "ANYGET" USING RESULT OF SAMPLE-MYANY-ARGS
WS-DATA

SET WS-ANYGET TO TRUE
PERFORM CHECK-STATUS
DISPLAY "ANY value equals " WS-DATA.
WHEN OTHER

DISPLAY "Wrong typecode received, expected a SHORT
typecode "

END-EVALUATE.
 370

API Reference Details
TYPESET

Synopsis TYPESET(inout POINTER any-pointer,
in 9(09) BINARY typecode-key-length,
in X(nn) typecode-key)

// Sets the type name of an any.

Description The TYPESET function sets the type of the any to the supplied typecode. You
must call TYPESET before you call ANYSET, because ANYSET uses the current
typecode information to insert the data into the any.

Parameters The parameters for TYPESET can be described as follows:

Example The example can be broken down as follows:

1. Consider the following IDL:

any-type This is an inout parameter that is a pointer to the
address in memory where the any is stored.

typecode-key-length This is an in parameter that specifies the length of
the typecode string, as defined in the idlmembername
copybook generated by the Orbix E2A IDL compiler.

typecode-key This is an in parameter containing the typecode
string representation, as defined in the
idlmembername copybook generated by the Orbix E2A
IDL compiler. The appropriate 88 level item is set for
the typecode to be used.
371

CHAPTER 8 | API Reference
2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the idlmembername copybook (where idlmembername
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

3. The following is an example of how to use TYPESET in a client or server
program:

See also ï �ANYFREE� on page 270.

ï �The any Type and Memory Management� on page 397.

01 SAMPLE-MYANY-ARGS.
03 RESULT POINTER

VALUE NULL.

*
* Typecode section
* This contains CDR encodings of necessary typecodes.
*

01 EXAMPLE-TYPE PICTURE X(15).
COPY CORBATYP.

88 SAMPLE VALUE
"IDL:sample:1.0".

01 EXAMPLE-TYPE-LENGTH PICTURE S9(09)
BINARY VALUE 22.

WORKING-STORAGE SECTION.
01 WS-DATA PIC S9(5) VALUE 0.

PROCEDURE DIVISION.
…
* Set the ANY typecode to be a CORBA::ShortLong
SET CORBA-TYPE-SHORT TO TRUE.
CALL "TYPESET" USING RESULT OF

SAMPLE-MYANY-ARGS
EXAMPLE-TYPE-LENGTH
EXAMPLE-TYPE.

SET WS-TYPESET TO TRUE.
PERFORM CHECK-STATUS.
 372

API Reference Details
WSTRFREE

Synopsis WSTRFREE(in POINTER widestring-pointer)
// Frees the memory allocated to a bounded wide string.
373

CHAPTER 8 | API Reference
WSTRGET

Synopsis WSTRGET(in POINTER widestring-pointer,
in 9(09) BINARY widestring-length,
out G(nn) widestring)

// Copies the contents of an unbounded wide string to a bounded
// wide string.

Usage Common to clients and servers.

Description The WSTRGET function copies the characters in the unbounded wide string
pointer, string_pointer, to the COBOL PIC X(n) wide string item. If the
string_pointer parameter does not contain enough characters to exactly
fill the target wide string, the target wide string is terminated by a space. If
there are too many characters in the string-pointer, the excess characters
are not copied to the target wide string.

Parameters The parameters for WSTRGET can be described as follows:

Note: Null characters are never copied from the string-pointer to the
target wide string.

widestring-pointer This is an in parameter that is the unbounded wide
string pointer containing a copy of the unbounded
wide string.

widestring-length This is an in parameter that specifies the length of
the unbounded wide string.

widestring This is an out parameter that is a bounded wide
string to which the contents of the wide string pointer
are copied. This wide string is terminated by a space
if it is larger than the contents of the wide string
pojnter.
 374

API Reference Details
WSTRLEN

Synopsis WSTRLEN(in POINTER widestring-pointer,
out 9(09) BINARY widestring-length)

// Returns the actual length of an unbounded wide string.

Usage Common to clients and servers.

Description The WSTRLEN function returns the number of characters in an unbounded
wide string.

Parameters The parameters for WSTRLEN can be described as follows:

widestring-pointer This is an in parameter that is the unbounded wide
string pointer containing the unbounded wide string.

widestring-length This is an out parameter that is used to retrieve the
actual length of the wide string that the
string-pointer contains.
375

CHAPTER 8 | API Reference
WSTRSET

Synopsis WSTRSET(out POINTER widestring-pointer,
in 9(09) BINARY widestring-length,
in G(nn) widestring)

// Creates a dynamic wide string from a PIC G(n) data item

Usage Common to clients and servers

Description The WSTRSET function creates an unbounded wide string to which it copies
the number of characters specified in length from the bounded wide string
specified in string. If the bounded wide string contains trailing spaces,
these are not copied to the target unbounded wide string whose memory
location is specified by string-pointer.

The WSTRSETP version of this function is identical, except that it does copy
trailing spaces. You can use the WSTRFREE to subsequently free this allocated
memory.

Parameters The parameters for WSTRSET can be described as follows:

widestring-pointer This is an out parameter to which the unbounded
string is copied.

widestring-length This is an in parameter that specifies the number of
characters to be copied from the bounded string
specified in string.

widestring This is an in parameter containing the bounded
string that is to be copied. This string is terminated
by a space if it is larger than the contents of the
target string pojnter. If the bounded string contains
trailing spaces, they are not copied.
 376

API Reference Details
WSTRSETP

Synopsis WSTRSETP(out POINTER widestring-pointer,
in 9(09) BINARY widestring-length,
in G(nn) widestring)

// Creates a dynamic wide string from a PIC G(n) data item.

Usage Common to clients and servers.

Description The WSTRSETP function is exactly the same as WSTRSET, except that WSTRSETP
does copy trailing spaces to the unbounded wide string. Refer to
�WSTRSET� on page 376 for more details.
377

CHAPTER 8 | API Reference
CHECK-STATUS

Synopsis CHECK-STATUS
// Checks to see if a system exception has occurred on an API call.

Usage Common to clients and servers.

Description The CHECK-STATUS paragraph written in COBOL checks to see if a system
exception has occurred on an API call. It is not an API in the COBOL
runtime. It is contained in the orbixhlq.INCLUDE.COPYLIB(CHKERRS)
member. To use CHECK-STATUS, you must use ORBSTAT to register the
ORBIX-STATUS-INFORMATION block with the COBOL runtime. (Refer to
�ORBSTAT� on page 329.) You should call CHECK-STATUS from the
application on each subsequent API call, to determine if an exception has
occurred on that API call.

The CHECK-STATUS paragraph checks the CORBA-EXCEPTION variable that is
defined in the ORBIX-STATUS-INFORMATION block, and which is updated after
every API call. If an exception has occurred, the following fields are set in
the ORBIX-STATUS-INFORMATION block:

CORBA-EXCEPTION This contains the appropriate value relating to the
exception that has occurred. Values are in the
range 1�36. A 0 value means no exception has
occurred.

COMPLETION-STATUS- This can be:

COMPLETION-STATUS-YES�Value 0.

COMPLETION-STATUS-NO�Value 1.

COMPLETION-STATUS-MAYBE�Value 2.

EXCEPTION-TEXT This is a COBOL pointer that contains a reference
to the text of the CORBA system exception that has
occurred.

Note: When an exception occurs, the JCL RETURN CODE is set to 12 and
the application terminates.
 378

API Reference Details
Parameters CHECK-STATUS takes no parameters.

Definition The CHECK-STATUS function is defined as follows in the CHKERRS copybook:

CHECK-STATUS.
IF NOT CORBA-NO-EXCEPTION THEN

DISPLAY "Call Failed in api: " WS-API-CALLED
SET CORBA-EXCEPTION-INDEX TO CORBA-EXCEPTION
SET CORBA-EXCEPTION-INDEX UP BY 1
DISPLAY "CORBA System Exception raised: "

CORBA-EXCEPTION-NAME(CORBA-EXCEPTION-INDEX)
SET CORBA-STATUS-INDEX TO COMPLETION-STATUS
SET CORBA-STATUS-INDEX UP BY 1
DISPLAY "Completion Status: "

CORBA-STATUS-NAME(CORBA-STATUS-INDEX)

CALL "STRGET" USING EXCEPTION-TEXT
ERROR-TEXT-LEN OF
ORBIX-EXCEPTION-TEXT
ERROR-TEXT OF
ORBIX-EXCEPTION-TEXT

DISPLAY "CORBA Error Message: "
DISPLAY ERROR-TEXT OF ORBIX-EXCEPTION-TEXT (1:64)
DISPLAY ERROR-TEXT OF ORBIX-EXCEPTION-TEXT (64:64)
DISPLAY ERROR-TEXT OF ORBIX-EXCEPTION-TEXT (128:64)
MOVE 12 TO RETURN-CODE
STOP RUN

END-IF.

Note: The CHECK-STATUS paragraph in the CERRSMFA copybook is almost
exactly the same, except it does not set the RETURN-CODE register, and it
calls GOBACK instead of STOP RUN if a system exception occurs. This means
that the native version of CHECK-STATUS is used to update the return code
and exit the program.
379

CHAPTER 8 | API Reference
Example The following is an example of how to use CHECK-STATUS in the batch server
implementation program:

DO-SIMPLE-SIMPLEOBJECT-CALL-ME.
CALL "COAGET" USING SIMPLE-SIMPLEOBJECT-70FE-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

CALL "COAPUT" USING SIMPLE-SIMPLEOBJECT-70FE-ARGS.
SET WS-COAPUT TO TRUE.
PERFORM CHECK-STATUS.

* Check Errors Copybook

COPY CHKERRS.

Note: The COPY CHKERRS statement in the preceding example is replaced
with COPY CERRSMFA in the IMS or CICS server programs.
 380

Deprecated APIs
Deprecated APIs

Deprecated APIs This section summarizes the APIs that were available with the Orbix 2.3
COBOL adapter, but which are now deprecated with the Orbix E2A COBOL
runtime. It also outlines the APIs that are replacing these deprecated APIs.

OBJGET(IN object_ref, OUT dest_pointer, IN src_length)
// Orbix 2.3 : Returned a stringified Orbix object reference.
// Orbix E2A: No replacement. Supported on the server side for
// migration purposes.

OBJGETI(IN object_ref, OUT dest_pointer, IN dest_length)
// Orbix 2.3 : Returned a stringified interoperable object
// reference (IOR) from a valid object reference.
// Orbix E2A: Replaced by OBJTOSTR.

OBJSET(IN object_name, OUT object_ref)
// Orbix 2.3 : Created an object reference from a stringified
// object reference.
// Orbix E2A: Replaced by STRTOOBJ.

OBJSETM(IN object_name, IN marker, OUT object_ref)
// Orbix 2.3 : Created an object reference from a stringified
// object reference and set its marker.
// Orbix E2A: Replaced by OBJNEW.

ORBALLOC(IN length, OUT pointer)
// Orbix 2.3 : Allocated memory at runtime.
// Orbix E2A: Replaced by MEMALLOC.

ORBFREE(IN pointer)
// Orbix 2.3 : Freed memory.
// Orbix E2A: Replaced by MEMFREE and STRFREE.

ORBGET(INOUT complete_cobol_operation_parameter_buffer)
// Orbix 2.3 : Got IN and INOUT values.
// Orbix E2A: Replaced by COAGET.

ORBINIT(IN server_name, IN server_name_len)
// Orbix 2.3 : Equivalent to impl_is_ready in C++.
// Orbix E2A: Replaced by COARUN.
381

CHAPTER 8 | API Reference
ORBPUT(INOUT complete_cobol_operation_parameter_buffer)
// Orbix 2.3 : Returned INOUT, OUT & result values.
// Orbix E2A: Replaced by COAPUT.

ORBREGO(IN cobol_interface_description, OUT object_ref)
// Orbix 2.3 : Describes an interface to the COBOL adapter and
// creates an object reference using the interface
// description.
// Orbix E2A: Replaced by OBJNEW and ORBREG.

ORBREQ(IN request_info_buffer)
// Orbix 2.3 : Provided current request information.
// Orbix E2A: Replaced by COAREQ.

STRSETSP(OUT dest_pointer, IN src_length, IN src)
// Orbix 2.3 : Created a dynamic string from a PIC X(n) data item.
// Orbix E2A: Replaced by STRSETP.
 382

CHAPTER 9

Memory Handling
Memory handling must be performed when using dynamic
structures such as unbounded strings, unbounded sequences,
and anys. This chapter provides details of responsibility for the
allocation and subsequent release of dynamic memory for
these complex types at the various stages of an Orbix E2A
COBOL application. It first describes in detail the memory
handling rules adopted by the COBOL runtime for operation
parameters relating to different dynamic structures. It then
provides a type-specific breakdown of the APIs that are used
to allocate and release memory for these dynamic structures.

In this chapter This chapter discusses the following topics:

Operation Parameters page 384

Memory Management Routines page 404
383

CHAPTER 9 | Memory Handling
Operation Parameters

Overview This section describes in detail the memory handling rules adopted by the
COBOL runtime for operation parameters relating to different types of
dynamic structures, such as unbounded strings, bounded and unbounded
sequences, and any types. Memory handling must be performed when using
these dynamic structures. It also describes memory issues arising from the
raising of exceptions.

In this section The following topics are discussed in this section:

Unbounded Sequences and Memory Management page 385

Unbounded Strings and Memory Management page 389

The any Type and Memory Management page 397

Memory Management Routines page 404
 384

Operation Parameters
Unbounded Sequences and Memory Management

Overview for IN parameters Table 27 provides a detailed outline of how memory is handled for
unbounded sequences that are used as in parameters.

Summary of rules for IN
parameters

The memory handling rules for an unbounded sequence used as an in
parameter can be summarized as follows, based on Table 27:

1. The client calls SEQALLOC to initialize the sequence information block
and allocate memory for both the sequence information block and the
sequence data.

2. The client calls SEQSET to initialize the sequence elements.

3. The client calls ORBEXEC, which causes the client-side COBOL runtime
to marshal the values across the network.

4. The server calls COAGET, which causes the server-side COBOL runtime
to receive the sequence and implicitly allocate memory for it.

5. The server calls SEQGET to obtain the sequence value from the
operation parameter buffer.

6. The server calls COAPUT, which causes the server-side COBOL runtime
to implicitly free the memory allocated by the call to COAGET.

7. The client calls SEQFREE to free the memory allocated by the call to
SEQALLOC.

Table 27: Memory Handling for IN Unbounded Sequences

Client Application Server Application

1. SEQALLOC
2. SEQSET
3. OREXEC�(send)

7. SEQFREE

4. COAGET�(receive, allocate)
5. SEQGET
6. COAPUT�(free)
385

CHAPTER 9 | Memory Handling
Overview for INOUT parameters Table 28 provides a detailed outline of how memory is handled for
unbounded sequences that are used as inout parameters.

Summary of rules for INOUT
parameters

The memory handling rules for an unbounded sequence used as an inout
parameter can be summarized as follows, based on Table 28:

1. The client calls SEQALLOC to initialize the sequence information block
and allocate memory for both the sequence information block and the
sequence data.

2. The client calls SEQSET to initialize the sequence elements.

3. The client calls ORBEXEC, which causes the client-side COBOL runtime
to marshal the values across the network.

4. The server calls COAGET, which causes the server-side COBOL runtime
to receive the sequence and implicitly allocate memory for it.

5. The server calls SEQGET to obtain the sequence value from the
operation parameter buffer.

6. The server calls SEQFREE to explicitly free the memory allocated for the
original in sequence via the call to COAGET in point 4.

7. The server calls SEQALLOC to initialize the replacement out sequence
and allocate memory for both the sequence information block and the
sequence data.

Table 28: Memory Handling for INOUT Unbounded Sequences

Client Application Server Application

1. SEQALLOC
2. SEQSET
3. OREXEC�(send)

10. (free, receive, allocate)
11. SEQGET
12. SEQFREE

4. COAGET�(receive, allocate)
5. SEQGET
6. SEQFREE
7. SEQALLOC
8. SEQSET
9. COAPUT�(send, free)
 386

Operation Parameters
8. The server calls SEQSET to initialize the sequence elements for the
replacement out sequence.

9. The server calls COAPUT, which causes the server-side COBOL runtime
to marshal the replacement out sequence across the network and then
implicitly free the memory allocated for it via the call to SEQALLOC in
point 7.

10. Control returns to the client, and the call to ORBEXEC in point 3 now
causes the client-side COBOL runtime to:

vi. Free the memory allocated for the original in sequence via the
call to SEQALLOC in point 1.

vii. Receive the replacement out sequence.

viii. Allocate memory for the replacement out sequence.

11. The client calls SEQGET to obtain the sequence value from the operation
parameter buffer.

12. The client calls SEQFREE to free the memory allocated for the
replacement out sequence in point 10 via the call to ORBEXEC in point
3.

Overview for OUT and return
parameters

Table 29 provides a detailed outline of how memory is handled for
unbounded sequences that are used as out or return parameters.

Note: By having ORBEXEC free the originally allocated memory before
allocating the replacement memory means that a memory leak is
avoided.

Table 29: Memory Handling for OUT and Return Unbounded Sequences

Client Application Server Application

1. ORBEXEC�(send)

6. (receive, allocate)
7. SEQGET
8. SEQFREE

2. COAGET�(receive)
3. SEQALLOC
4. SEQSET
5. COAPUT�(send, free)
387

CHAPTER 9 | Memory Handling
Summary of rules for OUT and
return parameters

The memory handling rules for an unbounded sequence used as an out or
return parameter can be summarized as follows, based on Table 29:

1. The client calls ORBEXEC, which causes the client-side COBOL runtime
to marshal the request across the network.

2. The server calls COAGET, which causes the server-side COBOL runtime
to receive the client request.

3. The server calls SEQALLOC to initialize the sequence and allocate
memory for both the sequence information block and the sequence
data.

4. The server calls SEQSET to initialize the sequence elements.

5. The server calls COAPUT, which causes the server-side COBOL runtime
to marshal the values across the network and implicitly free the
memory allocated to the sequence via the call to SEQALLOC.

6. Control returns to the client, and the call to ORBEXEC in point 1 now
causes the client-side COBOL runtime to receive the sequence and
implicitly allocate memory for it.

7. The client calls SEQGET to obtain the sequence value from the operation
parameter buffer.

8. The client calls SEQFREE, which causes the client-side COBOL runtime
to free the memory allocated for the sequence via the call to ORBEXEC.
 388

Operation Parameters
Unbounded Strings and Memory Management

Overview for IN parameters Table 30 provides a detailed outline of how memory is handled for
unbounded strings that are used as in parameters.

Summary of rules for IN
parameters

The memory handling rules for an unbounded string used as an in
parameter can be summarized as follows, based on Table 30:

1. The client calls STRSET to initialize the unbounded string and allocate
memory for it.

2. The client calls ORBEXEC, which causes the client-side COBOL runtime
to marshal the values across the network.

3. The server calls COAGET, which causes the server-side COBOL runtime
to receive the string and implicitly allocate memory for it.

4. The server calls STRGET to obtain the string value from the operation
parameter buffer.

5. The server calls COAPUT, which causes the server-side COBOL runtime
to implicitly free the memory allocated by the call to COAGET.

6. The client calls STRFREE to free the memory allocated by the call to
STRSET.

Table 30: Memory Handling for IN Unbounded Strings

Client Application Server Application

1. STRSET
2. ORBEXEC�(send)

6. STRFREE

3. COAGET�(receive, allocate)
4. STRGET
5. COAPUT�(free)
389

CHAPTER 9 | Memory Handling
Overview for INOUT parameters Table 31 provides a detailed outline of how memory is handled for
unbounded strings that are used as inout parameters.

Summary of rules for INOUT
parameters

The memory handling rules for an unbounded string used as an inout
parameter can be summarized as follows, based on Table 31:

1. The client calls STRSET to initialize the unbounded string and allocate
memory for it.

2. The client calls ORBEXEC, which causes the client-side COBOL runtime
to marshal the values across the network.

3. The server calls COAGET, which causes the server-side COBOL runtime
to receive the string and implicitly allocate memory for it.

4. The server calls STRGET to obtain the string value from the operation
parameter buffer.

5. The server calls STRFREE to explicitly free the memory allocated for the
original in string via the call to COAGET in point 3.

6. The server calls STRSET to initialize the replacement out string and
allocate memory for it.

7. The server calls COAPUT, which causes the server-side COBOL runtime
to marshal the replacement out string across the network and then
implicitly free the memory allocated for it via the call to STRSET in point
6.

Table 31: Memory Handling for INOUT Unbounded Strings

Client Application Server Application

1. STRSET
2. ORBEXEC�(send)

8. (free, receive, allocate)
9. STRGET
10. STRFREE

3. COAGET�(receive, allocate)
4. STRGET
5. STRFREE
6. STRSET
7. COAPUT�(send, free)
 390

Operation Parameters
8. Control returns to the client, and the call to ORBEXEC in point 2 now
causes the client-side COBOL runtime to:

i. Free the memory allocated for the original in string via the call to
STRSET in point 1.

ii. Receive the replacement out string.

iii. Allocate memory for the replacement out string.

9. The client calls STRGET to obtain the replacement out string value from
the operation parameter buffer.

10. The client calls STRFREE to free the memory allocated for the
replacement out string in point 8 via the call to ORBEXEC in point 2.

Overview for OUT and return
parameters

Table 32 provides a detailed outline of how memory is handled for
unbounded strings that are used as out or return parameters.

Summary of rules for OUT and
return parameters

The memory handling rules for an unbounded string used as an out or
return parameter can be summarized as follows, based on Table 32:

1. The client calls ORBEXEC, which causes the client-side COBOL runtime
to marshal the request across the network.

2. The server calls COAGET, which causes the server-side COBOL runtime
to receive the client request.

Note: By having ORBEXEC free the originally allocated memory before
allocating the replacement memory means that a memory leak is
avoided.

Table 32: Memory Handling for OUT and Return Unbounded Strings

Client Application Server Application

1. ORBEXEC�(send)

5. (receive, allocate)
6. STRGET
7. STRFREE

2. COAGET�(receive)
3. STRSET
4. COAPUT�(send, free)
391

CHAPTER 9 | Memory Handling
3. The server calls STRSET to initialize the string and allocate memory for
it.

4. The server calls COAPUT, which causes the server-side COBOL runtime
to marshal the values across the network and implicitly free the
memory allocated to the string via the call to STRSET.

5. Control returns to the client, and the call to ORBEXEC in point 1 now
causes the client-side COBOL runtime to receive the string and
implicitly allocate memory for it.

6. The client calls STRGET to obtain the string value from the operation
parameter buffer.

7. The client calls STRFREE, which causes the client-side COBOL runtime
to free the memory allocated for the string in point 5 via the call to
ORBEXEC in point 1.
 392

Operation Parameters
Object References and Memory Management

Overview for IN parameters Table 33 provides a detailed outline of how memory is handled for object
references that are used as in parameters.

Summary of rules for IN
parameters

The memory handling rules for an object reference used as an in parameter
can be summarized as follows, based on Table 33:

1. The client attains an object reference through some retrieval
mechanism (for example, by calling STRTOOBJ or OBJRIR).

2. The client calls ORBEXEC, which causes the client-side COBOL runtime
to marshal the object reference across the network.

3. The server calls COAGET, which causes the server-side COBOL runtime
to receive the object reference.

4. The server can now invoke on the object reference.

5. The server calls COAPUT, which causes the server-side COBOL runtime
to implicitly free any memory allocated by the call to COAGET.

6. The client calls OBJREL to release the object.

Table 33: Memory Handling for IN Object References

Client Application Server Application

1. Attain object reference
2. ORBEXEC�(send)

6. OBJREL

3. COAGET�(receive)
4. read
5. COAPUT
393

CHAPTER 9 | Memory Handling
Overview for INOUT parameters Table 34 provides a detailed outline of how memory is handled for object
references that are used as inout parameters.

Summary of rules for INOUT
parameters

The memory handling rules for an object reference used as an inout
parameter can be summarized as follows, based on Table 34:

1. The client attains an object reference through some retrieval
mechanism (for example, by calling STRTOOBJ or OBJRIR).

2. The client calls ORBEXEC, which causes the client-side COBOL runtime
to marshal the object reference across the network.

3. The server calls COAGET, which causes the server-side COBOL runtime
to receive the object reference.

4. The server can now invoke on the object reference.

5. The server calls OBJREL to release the original in object reference.

6. The server attains an object reference for the replacement out
parameter through some retrieval mechanism (for example, by calling
STRTOOBJ or OBJRIR).

7. The server calls OBJDUP to increment the object reference count and to
prevent the call to COAPUT in point 8 from causing the replacement out
object reference to be released.

8. The server calls COAPUT, which causes the server-side COBOL runtime
to marshal the replacement out object reference across the network.

Table 34: Memory Handling for INOUT Object References

Client Application Server Application

1. Attain object reference
2. ORBEXEC�(send)

9. (receive)
10. read
11. OBJREL

3. COAGET�(receive)
4. read
5. OBJREL
6. Attain object reference
7. OBJDUP
8. COAPUT�(send)
 394

Operation Parameters
9. Control returns to the client, and the call to ORBEXEC in point 2 now
causes the client-side COBOL runtime to receive the replacement out
object reference.

10. The client can now invoke on the replacement object reference.

11. The client calls OBJREL to release the object.

Overview for OUT and return
parameters

Table 35 provides a detailed outline of how memory is handled for object
references that are used as out or return parameters.

Summary of rules for OUT and
return parameters

The memory handling rules for an object reference used as an out or return
parameter can be summarized as follows, based on Table 35:

1. The client calls ORBEXEC, which causes the client-side COBOL runtime
to marshal the request across the network.

2. The server calls COAGET, which causes the server-side COBOL runtime
to receive the client request.

3. The server attains an object reference through some retrieval
mechanism (for example, by calling STRTOOBJ or OBJRIR).

4. The server calls OBJDUP to increment the object reference count and to
prevent the call to COAPUT in point 5 from causing the object reference
to be released.

5. The server calls COAPUT, which causes the server-side COBOL runtime
to marshal the object reference across the network.

6. Control returns to the client, and the call to ORBEXEC in point 1 now
causes the client-side COBOL runtime to receive the object reference.

Table 35: Memory Handling for OUT and Return Object References

Client Application Server Application

1. ORBEXEC�(send)

6. (receive)
7. read
8. OBJREL

2. COAGET�(receive)
3. Attain object reference
4. OBJDUP
5. COAPUT�(send)
395

CHAPTER 9 | Memory Handling
7. The client can now invoke on the object reference.

8. The client calls OBJREL to release the object.
 396

Operation Parameters
The any Type and Memory Management

Overview for IN parameters Table 36 provides a detailed outline of how memory is handled for an any
type that is used as an in parameter.

Summary of rules for IN
parameters

The memory handling rules for an any type used as an in parameter can be
summarized as follows, based on Table 36:

1. The client calls TYPESET to set the type of the any.

2. The client calls ANYSET to set the value of the any and allocate memory
for it.

3. The client calls ORBEXEC, which causes the client-side COBOL runtime
to marshal the values across the network.

4. The server calls COAGET, which causes the server-side COBOL runtime
to receive the any value and implicitly allocate memory for it.

5. The server calls TYPEGET to obtain the typecode of the any.

6. The server calls ANYGET to obtain the value of the any from the
operation parameter buffer.

7. The server calls COAPUT, which causes the server-side COBOL runtime
to implicitly free the memory allocated by the call to COAGET.

8. The client calls ANYFREE to free the memory allocated by the call to
ANYSET.

Table 36: Memory Handling for IN Any Types

Client Application Server Application

1. TYPESET
2. ANYSET
3. ORBEXEC�(send)

8. ANYFREE

4. COAGET�(receive, allocate)
5. TYPEGET
6. ANYGET
7. COAPUT�(free)
397

CHAPTER 9 | Memory Handling
Overview for INOUT parameters Table 37 provides a detailed outline of how memory is handled for an any
type that is used as an inout parameter.

Summary of rules for INOUT
parameters

The memory handling rules for an any type used as an inout parameter can
be summarized as follows, based on Table 37:

1. The client calls TYPESET to set the type of the any.

2. The client calls ANYSET to set the value of the any and allocate memory
for it.

3. The client calls ORBEXEC, which causes the client-side COBOL runtime
to marshal the values across the network.

4. The server calls COAGET, which causes the server-side COBOL runtime
to receive the any value and implicitly allocate memory for it.

5. The server calls TYPEGET to obtain the typecode of the any.

6. The server calls ANYGET to obtain the value of the any from the
operation parameter buffer.

7. The server calls ANYFREE to explicitly free the memory allocated for the
original in value via the call to COAGET in point 4.

8. The server calls TYPESET to set the type of the replacement any.

Table 37: Memory Handling for INOUT Any Types

Client Application Server Application

1. TYPESET
2. ANYSET
3. ORBEXEC�(send)

11. (free, receive, allocate)
12. TYPEGET
13. ANYGET
14. ANYFREE

4. COAGET�(receive, allocate)
5. TYPEGET
6. ANYGET
7. ANYFREE
8. TYPSET
9. ANYSET
10. COAPUT�(send, free)
 398

Operation Parameters
9. The server calls ANYSET to set the value of the replacement any and
allocate memory for it.

10. The server calls COAPUT, which causes the server-side COBOL runtime
to marshal the replacement any value across the network and then
implicitly free the memory allocated for it via the call to ANYSET in point
9.

11. Control returns to the client, and the call to ORBEXEC in point 3 now
causes the client-side COBOL runtime to:

i. Free the memory allocated for the original any via the call to
ANYSET in point 2.

ii. Receive the replacement any.

iii. Allocate memory for the replacement any.

12. The client calls TYPEGET to obtain the typecode of the replacement
any.

13. The client calls ANYGET to obtain the value of the replacement any from
the operation parameter buffer.

14. The client calls ANYFREE to free the memory allocated for the
replacement out string in point 11 via the call to ORBEXEC in point 3.

Note: By having ORBEXEC free the originally allocated memory before
allocating the replacement memory means that a memory leak is
avoided.
399

CHAPTER 9 | Memory Handling
Overview for OUT and return
parameters

Table 38 provides a detailed outline of how memory is handled for an any
type that is used as an out or return parameter.

Summary of rules for OUT and
return parameters

The memory handling rules for an any type used as an out or return
parameter can be summarized as follows, based on Table 38:

1. The client calls ORBEXEC, which causes the client-side COBOL runtime
to marshal the request across the network.

2. The server calls COAGET, which causes the server-side COBOL runtime
to receive the client request.

3. The server calls calls TYPESET to set the type of the any.

4. The server calls ANYSET to set the value of the any and allocate memory
for it.

5. The server calls COAPUT, which causes the server-side COBOL runtime
to marshal the values across the network and implicitly free the
memory allocated to the any via the call to ANYSET.

6. Control returns to the client, and the call to ORBEXEC in point 1 now
causes the client-side COBOL runtime to receive the any and implicitly
allocate memory for it.

7. The client calls TYPEGET to obtain the typecode of the any.

8. The client calls ANYGET to obtain the value of the any from the
operation parameter buffer.

Table 38: Memory Handling for OUT and Return Any Types

Client Application Server Application

1. ORBEXEC�(send)

6. (receive, allocate)
7. TYPEGET
8. ANYGET
9. ANYFREE

2. COAGET�(receive)
3. TYPESET
4. ANYSET
5. COAPUT�(send, free)
 400

Operation Parameters
9. The client calls ANYFREE, which causes the client-side COBOL runtime
to free the memory allocated for the any in point 6 via the call to
ORBEXEC in point 1.
401

CHAPTER 9 | Memory Handling
User Exceptions and Memory Management

Overview Table 39 provides a detailed outline of how memory is handled for user
exceptions.

Summary of rules The memory handling rules for raised user exceptions can be summarized as
follows, based on Table 39:

1. The client calls ORBEXEC, which causes the COBOL runtime to marshal
the client request across the network.

2. The server calls COAGET, which causes the server-side COBOL runtime
to receive the client request and allocate memory for any arguments (if
necessary).

3. The server initializes the user exception block with the information for
the exception to be raised.

4. The server calls COAERR, to raise the user exception.

5. The server-side COBOL runtime automatically frees the memory
allocated for the user exception in point 3.

Table 39: Memory Handling for User Exceptions

Client Application Server Application

1. ORBEXEC�(send)

6. Free

2. COAGET�(receive, allocate)
3. write
4. COAERR
5. (free)

Note: The COBOL runtime does not, however, free the argument
buffers for the user exception. To prevent a memory leak, it is up to
the server program to explicitly free active argument structures,
regardless of whether they have been allocated automatically by the
COBOL runtime or allocated manually. This should be done before
the server calls COAERR.
 402

Operation Parameters
6. The client must explicitly free the exception ID in the user exception
header, by calling STRFREE. It must also free any exception data
mapping to dynamic structures (for example, if the user exception
information block contains a sequence, this can be freed by calling
SEQFREE).
403

CHAPTER 9 | Memory Handling
Memory Management Routines

Overview This section provides examples of COBOL routines for allocating and freeing
memory for various types of dynamic structures. These routines are
necessary when sending arguments across the wire or when using
user-defined IDL types as variables within COBOL.

Unbounded strings Use STRSET to allocate memory for unbounded strings, and STRFREE to
subsequently free this memory. For example:

01 MY-COBOL-STRING PICTURE X(11) VALUE "Testing 123".
01 MY-COBOL-STRING-LEN PIC 9(09) BINARY VALUE 11.
01 MY-CORBA-STRING POINTER VALUE NULL.

* Allocation
CALL "STRSET" USING MY-CORBA-STRING

MY-COBOL-STRING-LEN
MY-CORBA-STRING.

* Deletion
CALL "STRFREE" USING MY-CORBA-STRING.

Note: Unbounded strings are stored internally as normal C or C++
strings that are terminated by a null character. The STRx routines provide
facilities for copying these strings without the null character. The STRx
routines also provide facilities for correctly truncating and padding the
strings to and from their COBOL equivalents. It can be useful to know
exactly how big the string actually is before copying it. You can use the
STRLEN function to obtain this information.
 404

Memory Management Routines
Unbounded wide strings Use WSTRSET to allocate memory for unbounded wide strings, and WSTRFRE
to subsequently free this memory. For example:

Typecodes As described in the Mapping chapter, typecodes are mapped to a pointer.
They are handled in COBOL as unbounded strings and should contain a
value corresponding to one of the typecode keys generated by the Orbix E2A
IDL compiler. For example:

Unbounded sequences Use SEQALLOC to initialize an unbounded sequence. This dynamically creates
a sequence information block that is used internally to record state, and
allocates the memory required for sequence elements. You can use SEQSET
and SEQGET to access the sequence elements. You can also use SEQSET to
resize the sequence if the maximum size of the sequence is not large enough
to contain another sequence element. Use SEQFREE to free memory allocated
via SEQALLOC. For example:

01 MY-CORBA-WSTRING POINTER VALUE NULL.

* Allocation
CALL "WSTRSET USING MY-CORBA-WSTRING

MY-COBOL-WSTRING-LEN
MY-CORBA-WSTRING.

* Deletion
CALL "WSTRFREE" USING MY-CORBA-WSTRING.

01 MY-TYPECODE POINTER VALUE NULL.

* Allocation
CALL "STRSET" USING MY-TYPECODE

MY-COMPLEX-TYPE
MY-COMPLEX-TYPE-LENGTH.

* Deletion
CALL "STRFREE" USING MY-TYPECODE.

* Allocation
CALL "SEQALLOC" USING MY-SEQUENCE-MAXIMUM

MY-USEQ-TYPE
MY-USEQ-TYPE-LENGTH
N-SEQUENCE OF MY-USEQ-ARGS.

* Deletion
CALL "SEQFREE" USING N-SEQUENCE OF MY-USEQ-ARGS.
405

CHAPTER 9 | Memory Handling
The any type Use TYPESET to initialize the any information status block and allocate
memory for it. Then use ANYSET to set the type of the any. Use ANYFREE to
free memory allocated via TYPESET. This frees the flat structure created via
TYPESET and any dynamic structures that are contained within it. For
example:

Note: You only need to call SEQFREE on the outermost sequence, because
it automatically deletes both the sequence information block and any
associated inner dynamic structures.

01 MY-CORBA-ANY POINTER VALUE NULL.
01 MY-LONG PIC 9(10) BINARY VALUE 123.
* Allocation
SET CORBA-TYPE-LONG TO TRUE.
CALL "TYPESET" USING MY-CORBA-ANY

MY-COMPLEX-TYPE-LENGTH
MY-COMPLEX-TYPE.

CALL "ANYSET" USING MY-CORBA-ANY
MY-LONG.

* Deletion
CALL "ANYFREE" USING MY-CORBA-ANY.
 406

CHAPTER 10

POA Policies
This chapter summarizes the POA policies that are supported
by the Orbix E2A COBOL runtime, and the argument used with
each policy.

In this chapter This chapter discusses the following topics:

Overview page 408

Summary page 408
407

CHAPTER 10 | POA Policies
Overview A POA�s policies play an important role in determining how the POA
implements and manages objects and processes client requests. There is
only one POA created by the Orbix E2A COBOL runtime, and that POA uses
only the policies listed in this chapter.

See the CORBA Programmerís Guide, C++ for more details about POAs
and POA policies in general. See the PortableServer::POA interface in the
CORBA Programmerís Reference, C++ for more details about the POA
interface and its policies.

Summary Table 40 describes the policies that are supported by the Orbix E2A COBOL
runtime, and the argument used with each policy.

Note: The POA policies described in this chapter are the only POA
policies that the Orbix E2A COBOL runtime supports. Orbix E2A COBOL
programmers have no control over these POA policies. They are outlined
here simply for the purposes of illustration and the sake of completeness.

Table 40: POA Policies Supported by the Orbix E2A COBOL Runtime

Policy Argument Used Description

Id Assignment USER_ID This policy determines whether object IDs are
generated by the POA or the application. The
USER_ID argument specifies that only the application
can assign object IDs to objects in this POA. The
application must ensure that all user-assigned IDs
are unique across all instances of the same POA.

USER_ID is usually assigned to a POA that has an
object lifespan policy of PERSISTENT (that is, it
generates object references whose validity can span
multiple instances of a POA or server process, so the
application requires explicit control over object IDs).

Id Uniqueness MULTIPLE_ID This policy determines whether a servant can be
associated with multiple objects in this POA. The
MULTIPLE_ID specifies that any servant in the POA
can be associated with multiple object IDs.
 408

Implicit Activation NO_IMPLICIT_ACTIVATION This policy determines the POA�s activation policy.
The NO_IMPLICIT_ACTIVATION argument specifies
that the POA only supports explicit activation of
servants.

Lifespan PERSISTENT This policy determines whether object references
outlive the process in which they were created. The
PERSISTENT argument specifies that the IOR contains
the address of the location domain�s implementation
repository, which maps all servers and their POAs to
their current locations. Given a request for a
persistent object, the Orbix daemon uses the object�s
virtual address first, and looks up the actual location
of the server process via the implementation
repository.

Request Processing USE_ACTIVE_OBJECT_MAP_ONLY This policy determines how the POA finds servants to
implement requests. The
USE_ACTIVE_OBJECT_MAP_ONLY argument assumes
that all object IDs are mapped to a servant in the
active object map. The active object map maintains
an object-servant mapping until the object is
explicitly deactivated via deactivate_object().

This policy is typically used for a POA that processes
requests for a small number of objects. If the object
ID is not found in the active object map, an
OBJECT_NOT_EXIST exception is raised to the client.
This policy requires that the POA has a servant
retention policy of RETAIN.

Servant Retention RETAIN The RETAIN argument with this policy specifies that
the POA retains active servants in its active object
map.

Table 40: POA Policies Supported by the Orbix E2A COBOL Runtime

Policy Argument Used Description
409

CHAPTER 10 | POA Policies
Thread SINGLE_THREAD_MODEL The SINGLE_THREAD_MODEL argument with this policy
specifies that requests for a single-threaded POA are
processed sequentially. In a multi-threaded
environment, all calls by a single-threaded POA to
implementation code (that is, servants and servant
managers) are made in a manner that is safe for
code that does not account for multi-threading.

Table 40: POA Policies Supported by the Orbix E2A COBOL Runtime

Policy Argument Used Description
 410

CHAPTER 11

System Exceptions
This chapter summarizes the Orbix E2A system exceptions that
are specific to the Orbix E2A COBOL runtime.

In this chapter This chapter discusses the following topics:

Note: This chapter does not describe other Orbix E2A system exceptions
that are not specific to the COBOL runtime. See the CORBA Programmerís
Guide, C++ for details of these other system exceptions.

CORBA::INITIALIZE:: exceptions page 412

CORBA::BAD_PARAM:: exceptions page 412

CORBA::INTERNAL:: exceptions page 412

CORBA::BAD_INV_ORDER:: exceptions page 413

CORBA::DATA_CONVERSION:: exceptions page 413
411

CHAPTER 11 | System Exceptions
CORBA::INITIALIZE::
exceptions

The following exception is defined within the CORBA::INITIALIZE:: scope:

CORBA::BAD_PARAM::
exceptions

The following exceptions are defined within the CORBA::BAD_PARAM:: scope:

CORBA::INTERNAL::
exceptions

The following exceptions are defined within the CORBA::INTERNAL:: scope:

UNKNOWN This exception is raised by any API when the exact
problem cannot be determined.

UNKNOWN_OPERATION This exception is raised by ORBEXEC, if the
operation is not valid for the interface.

NO_OBJECT_IDENTIFIER This exception is raised by OBJNEW, if the
parameter for the object name is an invalid string.

INVALID_SERVER_NAME This exception is raised if the server name that is
passed does not match the server name passed to
ORBSRVR.

UNEXPECTED_INVOCATION This exception is raised on the server side when a
request is being processed, if a previous request
has not completed successfully.

UNKNOWN_TYPECODE This exception is raised internally by the COBOL
runtime, to show that a serious error has occurred.
It normally means that there is an issue with the
typecodes in relation to either the idlmembernameX
copybook or the application itself.

INVALID_STREAMABLE This exception is raised internally by the COBOL
runtime, to show that a serious error has occurred.
It normally means that there is an issue with the
typecodes in relation to either the idlmembernameX
copybook or the application itself.
 412

CORBA::BAD_INV_ORDER::
exceptions

The following exceptions are defined within the CORBA::BAD_INV_ORDER::
scope:

CORBA::DATA_CONVERSION::
exceptions

The following exception is defined within the CORBA::DATA_CONVERSION::
scope:

INTERFACE_NOT_REGISTERED This exception is raised if the specified
interface has not been registered via
ORBREG.

INTERFACE_ALREADY_REGISTEREDThis exception is raised by ORBREG, if the
client or server attempts to register the
same interface more than once.

ADAPTER_ALREADY_INITIALIZED This exception is raised by ORBARGS, if it is
called more than once in a client or server.

STAT_ALREADY_CALLED This exception is raised by ORBSTAT if it is
called more than once.

SERVER_NAME_ALREADY_SET This exception is raised by ORBSRVR, if the
API is called more than once.

SERVER_NAME_NOT_SET This exception is raised by OBJNEW, COAREQ,
OBJGETID, or COARUN, if ORBSRVR is called.

NO_CURRENT_REQUEST This exception is raised by COAREQ, if no
request is currently in progress.

ARGS_NOT_READ This exception is raised by COAPUT, if the in
or inout parameters for the request have
not been processed.

ARGS_ALREADY_READ This exception is raised by COAGET, if the in
or inout parameters for the request have
already been processed.

TYPESET_NOT_CALLED This exception is raised by ANYSET or
TYPEGET, if the typecode for the any type
has not been set via a call to TYPESET.

VALUE_OUT_OF_RANGE This exception is raised by ORBEXEC, COAGET, or
COAPUT, if the value is determined to be out of range
when marshalling a long, short, unsigned short,
unsigned long long long, or unsigned long long
type.
413

CHAPTER 11 | System Exceptions
 414

Index

A
abstract interfaces in IDL 139
ADAPTER_ALREADY_INITIALIZED exception 413
address space layout for COBOL application 47
ANYFREE function 270
ANYGET function 272
ANYSET function 274
any type

in IDL 142
mapping to COBOL 205
memory handling for 397

APIs 263
application interfaces, developing 19, 56, 89
ARGS_ALREADY_READ exception 413
ARGS_NOT_READ exception 413
array type

in IDL 151
mapping to COBOL 203

attributes
in IDL 126
mapping to COBOL 223

B
basic types

in IDL 141
mapping to COBOL 166

bitwise operators 158
boolean type, mapping to COBOL 171
built-in types in IDL 141

C
char type

in IDL 142
mapping to COBOL 177

CHECK-STATUS function 378
client output 46
clients

building 41, 82, 115
introduction to 5
running 45
writing 36, 77, 110

COAERR function 277
COAGET function 27, 65, 98, 281
COAPUT function 27, 65, 98, 286
COAREQ function 292
COARUN function 297
COBOL group data definitions 23, 60, 93
COBOL runtime 6, 48, 263
COBOL source, generating from IDL 21, 58, 91
configuration domains 9
constant definitions in IDL 155
constant expressions in IDL 158
constant fixed types in IDL 145
copybooks, generating 21, 58, 91
CORBA

introduction to 2
objects 3

D
data types, defining in IDL 154
decimal fractions 145

E
empty interfaces in IDL 128
enum type

in IDL 147
mapping to COBOL 174
ordinal values of 147

exceptions, in IDL 127
 See also system exceptions, user exceptions

extended built-in types in IDL 143

F
fixed type

in IDL 144
mapping to COBOL 187

floating point type in IDL 141
forward declaration of interfaces in IDL 134

I
Id Assignment policy 408
identifier names, mapping to COBOL 163
415

INDEX
IDL
abstract interfaces 139
arrays 151
attributes 126
built-in types 141
constant definitions 155
constant expressions 158
defining 20, 57, 90
empty interfaces 128
enum type 147
exceptions 127
extended built-in types 143
forward declaration of interfaces 134
inheritance redefinition 133
interface inheritance 129
introduction to interfaces 3
local interfaces 135
modules and name scoping 119
multiple inheritance 130
object interface inheritance 132
operations 123
pseudo object types 153
sequence type 152
struct type 148
structure 118
union type 149
valuetypes 137

IDL-to-COBOL mapping
any type 205
array type 203
attributes 223
basic types 166
boolean type 171
char type 177
enum type 174
exception type 207
fixed type 187
identifier names 163
object type 213
octet type 179
operations 218, 224
sequence type 198
string type 181
struct type 191
typedefs 210
type names 165
union type 193
user exception type 207
wide string type 186
 416
Id Uniqueness policy 408
IIOP protocol 2
Implicit Activation policy 409
inheritance redefinition in IDL 133
INTERFACE_ALREADY_REGISTERED

exception 413
interface inheritance in IDL 129
INTERFACE_NOT_REGISTERED exception 413
interfaces, developing for your application 19, 56,

89
INVALID_SERVER_NAME exception 412
INVALID_STREAMABLE exception 412

J
JCL components, checking 18, 55, 88

L
Lifespan policy 409
local interfaces in IDL 135
local object pseudo-operations 136
location domains 9
locator daemon

introduction to 10
starting 43

long double type in IDL 144
long long type in IDL 143

M
MEMALLOC function 298
MEMFREE function 300
memory handling

any type 397
object references 393
routines for 404
unbounded sequences 385
unbounded strings 389
user exceptions 402

modules and name scoping in IDL 119
MULTIPLE_ID argument 408
multiple inheritance in IDL 130

N
NO_CURRENT_REQUEST exception 413
node daemon

introduction to 10
starting 44

NO_IMPLICIT_ACTIVATION argument 409

INDEX
NO_OBJECT_IDENTIFIER exception 412

O
OBJDUP function 301
object interface inheritance in IDL 132
object references

introduction to 3
memory handling for 393

object request broker. See ORB
objects, defined in CORBA 3
object type, mapping to COBOL 213
OBJGETI deprecated function 381
OBJGETID function 303
OBJNEW function 305
OBJREL function 308
OBJRIR function 310
OBJSET deprecated function 381
OBJTOSTR function 32, 312
octet type

in IDL 142
mapping to COBOL 179

operations
in IDL 123
mapping to COBOL 218

ORB, role of 5
ORBALLOC deprecated function 381
ORBARGS function 32, 70, 102, 314
ORBEXEC function 317
ORBFREE deprecated function 381
ORBGET deprecated function 381
ORBHOST function 323
ORBINIT deprecated function 381
Orbix E2A COBOL runtime 6, 48, 263
Orbix E2A IDL compiler

configuration settings 257
introduction to 21, 58, 91
-M argument 244
-O argument 250
-Q argument 252
running 238
-S argument 253
specifying arguments for 243
-Z argument 256

Orbix locator daemon. See locator daemon
Orbix node daemon. See node daemon
ORBPUT deprecated function 382
ORBREG function 325
ORBREGO deprecated function 382
ORBREQ deprecated function 382
ORBSRVR function 328
ORBSTAT function 329
ORBTIME function 333

P
PERSISTENT argument 409
plug-ins, introduction to 7
pseudo object types in IDL 153

R
Request Processing policy 409
RETAIN argument 409

S
SEQALLOC function 335
SEQDUP function 339
SEQFREE function 344
SEQGET function 347
SEQSET function 350
sequence type

in IDL 152
mapping to COBOL 198
See also memory handling

Servant Retention policy 409
SERVER_NAME_ALREADY_SET exception 413
SERVER_NAME_NOT_SET exception 413
server output 46
servers

building 34, 72, 104
introduction to 5
running 45
writing implementation code for 25, 63, 96
writing mainline code for 28, 67, 100

SIMPLIDL JCL 238
SINGLE_THREAD_MODEL argument 410
SSL 7
STAT_ALREADY_CALLED exception 413
STRFREE function 355
STRGET function 357
string type

in IDL 142
mapping to COBOL 181
See also memory handling

STRLEN function 360
STRSET function 362
STRSETP function 365
STRSETSP deprecated function 382
STRTOOBJ function 367
417

INDEX
struct type
in IDL 148
mapping to COBOL 191

system exceptions 411

T
Thread policy 410
typedefs, mapping to COBOL 210
TYPEGET function 369
type names, mapping to COBOL 165
TYPESET function 371
TYPESET_NOT_CALLED exception 413

U
unbounded sequences, memory handling for 385
unbounded strings, memory handling for 389
UNEXPECTED_INVOCATION exception 412
union type

in IDL 149
mapping to COBOL 193

UNKNOWN exception 412
UNKNOWN_OPERATION exception 412
UNKNOWN_TYPECODE exception 412
USE_ACTIVE_OBJECT_MAP_ONLY argument 409
user exceptions

mapping to COBOL 207
memory handling for 402

USER_ID argument 408

V
valuetypes in IDL 137

W
wchar type in IDL 144
wide string type, mapping to COBOL 186
WSTRFREE function 373
WSTRGET function 186, 374
wstring type in IDL 144
WSTRLEN function 375
WSTRSET function 186, 376
WSTRSETP function 377
 418

	List of Figures
	List of Tables
	Preface
	Introduction to Orbix E2A
	Why CORBA?
	CORBA Objects
	Object Request Broker

	CORBA Application Basics
	Orbix Plug-In Design
	Orbix Application Deployment
	Location Domains
	Configuration Domains

	Getting Started in Batch
	Overview and Setup Requirements
	Developing the Application Interfaces
	Defining IDL Interfaces
	Generating COBOL Source and Copybooks

	Developing the Server
	Writing the Server Implementation
	Writing the Server Mainline
	Building the Server

	Developing the Client
	Writing the Client
	Building the Client

	Running the Application
	Starting the Orbix E2A Locator Daemon
	Starting the Orbix E2A Node Daemon
	Running the Server and Client
	Application Output

	Application Address Space Layout

	Getting Started in IMS
	Overview and Setup Requirements
	Developing the Application Interfaces
	Defining IDL Interfaces
	Generating COBOL Source and Copybooks

	Developing the Server
	Writing the Server Implementation
	Writing the Server Mainline
	Building the Server
	Preparing the Server to Run in IMS

	Developing and Running the Client
	Writing the Client
	Building and Running the Client

	Getting Started in CICS
	Overview and Setup Requirements
	Developing the Application Interfaces
	Defining IDL Interfaces
	Generating COBOL Source and Copybooks

	Developing the Server
	Writing the Server Implementation
	Writing the Server Mainline
	Building the Server
	Preparing the Server to Run in CICS

	Developing and Running the Client
	Writing the Client
	Building and Running the Client

	IDL Interfaces
	IDL
	Modules and Name Scoping
	Interfaces
	Interface Contents
	Operations
	Attributes
	Exceptions
	Empty Interfaces
	Inheritance of Interfaces
	Multiple Inheritance
	Inheritance of the Object Interface
	Inheritance Redefinition
	Forward Declaration of IDL Interfaces
	Local Interfaces
	Valuetypes
	Abstract Interfaces

	IDL Data Types
	Built-in Data Types
	Extended Built-in Data Types
	Complex Data Types
	Enum Data Type
	Struct Data Type
	Union Data Type
	Arrays
	Sequence
	Pseudo Object Types

	Defining Data Types
	Constants
	Constant Expressions

	IDL-to-COBOL Mapping
	Mapping for Identifier Names
	Mapping for Type Names
	Mapping for Basic Types
	Mapping for Boolean Type
	Mapping for Enum Type
	Mapping for Char Type
	Mapping for Octet Type
	Mapping for String Types
	Mapping for Wide String Types
	Mapping for Fixed Type
	Mapping for Struct Type
	Mapping for Union Type
	Mapping for Sequence Types
	Mapping for Array Type
	Mapping for the Any Type
	Mapping for User Exception Type
	Mapping for Typedefs
	Mapping for the Object Type
	Mapping for Constant Types
	Mapping for Operations
	Mapping for Attributes
	Mapping for Operations with a Void Return Type and No Parameters
	Mapping for Inherited Interfaces
	Mapping for Multiple Interfaces

	Orbix E2A IDL Compiler
	Running the Orbix E2A IDL Compiler
	Generated COBOL Members
	Orbix E2A IDL Compiler Arguments
	Specifying the Compiler Arguments
	-M Argument
	-O Argument
	-Q Argument
	-S Argument
	-T Argument
	-Z Argument

	Configuration Member Settings
	COBOL Configuration Settings
	Adapter Mapping Member Configuration Settings

	API Reference
	API Reference Summary
	API Reference Details
	ANYFREE
	ANYGET
	ANYSET
	COAERR
	COAGET
	COAPUT
	COAREQ
	COARUN
	MEMALLOC
	MEMFREE
	OBJDUP
	OBJGETID
	OBJNEW
	OBJREL
	OBJRIR
	OBJTOSTR
	ORBARGS
	ORBEXEC
	ORBHOST
	ORBREG
	ORBSRVR
	ORBSTAT
	ORBTIME
	SEQALLOC
	SEQDUP
	SEQFREE
	SEQGET
	SEQSET
	STRFREE
	STRGET
	STRLEN
	STRSET
	STRSETP
	STRTOOBJ
	TYPEGET
	TYPESET
	WSTRFREE
	WSTRGET
	WSTRLEN
	WSTRSET
	WSTRSETP
	CHECK-STATUS

	Deprecated APIs

	Memory Handling
	Operation Parameters
	Unbounded Sequences and Memory Management
	Unbounded Strings and Memory Management
	Object References and Memory Management
	The any Type and Memory Management
	User Exceptions and Memory Management

	Memory Management Routines

	POA Policies
	System Exceptions
	Index

