COBOL Programmer’s Guide and Reference

Version 5.0.1, July 2002

End to end is nothing.
END 2 ANYWHERE is everything.™

Orbix, Orbix E2A, Orbix E2A Application Server Platform, Orbix E2A Application Server,
Orbix E2A XMLBus, Orbix E2A IMS Connector, Adaptive Runtime Technology, are trade-
marks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.

IONA, IONA Technologies, the IONA logo, End 2 Anywhere, End To Anywhere, IONA
e-Business Platform, and Total Business Integration are trademarks or registered trade-
marks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 1998, 2002 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

M2909

Contents

List of Figures
List of Tables
Preface

Chapter 1 Introduction to Orbix E2A
Why CORBA?
CORBA Objects
Object Request Broker
CORBA Application Basics
Orbix Plug-In Design
Orbix Application Deployment
Location Domains
Configuration Domains

Chapter 2 Getting Started in Batch
Overview and Setup Requirements
Developing the Application Interfaces

Defining IDL Interfaces
Generating COBOL Source and Copybooks
Developing the Server
Writing the Server Implementation
Writing the Server Mainline
Building the Server
Developing the Client
Writing the Client
Building the Client
Running the Application
Starting the Orbix E2A Locator Daemon
Starting the Orbix E2A Node Daemon
Running the Server and Client
Application Output

Xi

Xiii

—OO~NOOTWN -

[ErE—Y

14
19
20
21
24
25
28
34
35
36
41
42
43
44
45
46

CONTENTS

Application Address Space Layout

Chapter 3 Getting Started in IMS
Overview and Setup Requirements
Developing the Application Interfaces

Defining IDL Interfaces

Generating COBOL Source and Copybooks
Developing the Server

Writing the Server Implementation

Writing the Server Mainline

Building the Server

Preparing the Server to Run in IMS
Developing and Running the Client

Writing the Client

Building and Running the Client

Chapter 4 Getting Started in CICS
Overview and Setup Requirements
Developing the Application Interfaces

Defining IDL Interfaces

Generating COBOL Source and Copybooks
Developing the Server

Writing the Server Implementation

Writing the Server Mainline

Building the Server

Preparing the Server to Run in CICS
Developing and Running the Client

Writing the Client

Building and Running the Client

Chapter 5 IDL Interfaces
IDL
Modules and Name Scoping
Interfaces
Interface Contents
Operations
Attributes
Exceptions

47

49
50
56
57
58
62
63
67
72
73
76
77
82

83
84
89
90
91
95
96

100
104
105
109
110
115

117
118
119
120
122
123
126
127

CONTENTS

Empty Interfaces 128
Inheritance of Interfaces 129
Multiple Inheritance 130
Inheritance of the Object Interface 132
Inheritance Redefinition 133
Forward Declaration of IDL Interfaces 134

Local Interfaces 135
Valuetypes 137
Abstract Interfaces 139

IDL Data Types 140
Built-in Data Types 141
Extended Built-in Data Types 143
Complex Data Types 146

Enum Data Type 147
Struct Data Type 148
Union Data Type 149
Arrays 151
Sequence 152
Pseudo Object Types 153
Defining Data Types 154
Constants 155
Constant Expressions 158
Chapter 6 IDL-to-COBOL Mapping 161
Mapping for Identifier Names 163
Mapping for Type Names 165
Mapping for Basic Types 166
Mapping for Boolean Type 171
Mapping for Enum Type 174
Mapping for Char Type 177
Mapping for Octet Type 179
Mapping for String Types 181
Mapping for Wide String Types 186
Mapping for Fixed Type 187
Mapping for Struct Type 191
Mapping for Union Type 193
Mapping for Sequence Types 198
Mapping for Array Type 203

Mapping for the Any Type 205

CONTENTS

Mapping for User Exception Type 207
Mapping for Typedefs 210
Mapping for the Object Type 213
Mapping for Constant Types 215
Mapping for Operations 218
Mapping for Attributes 223
Mapping for Operations with a Void Return Type and No Parameters 224
Mapping for Inherited Interfaces 226
Mapping for Multiple Interfaces 233
Chapter 7 Orbix E2A IDL Compiler 237
Running the Orbix E2A IDL Compiler 238
Generated COBOL Members 240
Orbix E2A IDL Compiler Arguments 242
Specifying the Compiler Arguments 243

-M Argument 244

-0 Argument 250

-Q Argument 252

-S Argument 253

-T Argument 254

-Z Argument 256
Configuration Member Settings 257
COBOL Configuration Settings 258
Adapter Mapping Member Configuration Settings 261
Chapter 8 API Reference 263
API Reference Summary 264
API Reference Details 268
ANYFREE 270
ANYGET 272
ANYSET 274
COAERR 277
COAGET 281
COAPUT 286
COAREQ 292
COARUN 297
MEMALLOC 298

MEMFREE 300

Vi

CONTENTS

OBJDUP 301

OBJGETID 303
OBJNEW 305
OBJREL 308
OBJRIR 310
OBJTOSTR 312
ORBARGS 314
ORBEXEC 317
ORBHOST 323
ORBREG 325
ORBSRVR 328
ORBSTAT 329
ORBTIME 333
SEQALLOC 335
SEQDUP 339
SEQFREE 344
SEQGET 347
SEQSET 350
STRFREE 355
STRGET 357
STRLEN 360
STRSET 362
STRSETP 365
STRTOOBJ 367
TYPEGET 369
TYPESET 371
WSTRFREE 373
WSTRGET 374
WSTRLEN 375
WSTRSET 376
WSTRSETP 377
CHECK-STATUS 378

Deprecated APIs 381

vii

CONTENTS

Chapter 9 Memory Handling

Operation Parameters
Unbounded Sequences and Memory Management
Unbounded Strings and Memory Management
Object References and Memory Management
The any Type and Memory Management
User Exceptions and Memory Management

Memory Management Routines

Chapter 10 POA Policies
Chapter 11 System Exceptions

Index

viii

383
384
385
389
393
397
402
404

407

411

415

List of Figures

Figure 1: The Nature of Abstract CORBA Objects

Figure 2: The Object Request Broker

Figure 3: Address Space Layout for an Orbix E2A COBOL Application
Figure 4: Inheritance Hierarchy for PremiumAccount Interface

47
131

LIST OF FIGURES

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:

Supplied Code and JCL

Supplied Copybooks

Generated Server Source Code Members

Generated COBOL Copybooks

Supplied Code and JCL

Supplied Copybooks

Generated Server Source Code Members

Generated COBOL Copybooks

Generated IMS Adapter Mapping Member

Supplied Code and JCL

Supplied Copybooks

Generated Server Source Code Members

Generated COBOL Copybooks

Generated CICS Adapter Mapping Member
CORBA::LocalObject Pseudo-Operations and Return Values
Built-in IDL Data Types, Sizes, and Values

Extended built-in IDL Data Types, Sizes, and Values
Mapping for Basic IDL Types

COBOL Members Generated by the Orbix E2A IDL Compiler
Example of Default Generated Data Names

Example of Level-0-Scoped Generated Data Names
Example of Level-1-Scoped Generated Data Names
Example of Level-2-Scoped Generated Data Names
COBOL Configuration Settings

Adapter Mapping Member Configuration Settings

Summary of Common Services and Their COBOL Identifiers

15
16
21
22
51
53
59
60
61
85
87
92
93
94
136
141
143
166
240
245
247
247
248
259
262
310

Xi

LIST OF TABLES

Table 27: Memory Handling for IN Unbounded Sequences 385
Table 28: Memory Handling for INOUT Unbounded Sequences 386
Table 29: Memory Handling for OUT and Return Unbounded Sequences 387
Table 30: Memory Handling for IN Unbounded Strings 389
Table 31: Memory Handling for INOUT Unbounded Strings 390
Table 32: Memory Handling for OUT and Return Unbounded Strings 391
Table 33: Memory Handling for IN Object References 393
Table 34: Memory Handling for INOUT Object References 394
Table 35: Memory Handling for OUT and Return Object References 395
Table 36: Memory Handling for IN Any Types 397
Table 37: Memory Handling for INOUT Any Types 398
Table 38: Memory Handling for OUT and Return Any Types 400
Table 39: Memory Handling for User Exceptions 402

Table 40: POA Policies Supported by the Orbix E2A COBOL Runtime 408

Xii

Audience

Supported Compilers

Preface

Orbix E2A is a full implementation from IONA Technologies of the Common
Object Request Broker Architecture (CORBA), as specified by the Object
Management Group (OMG). Orbix E2A complies with the following
specifications:

T CORBA2.3
T GIOP 1.2 (default), 1.1, and 1.0

The Orbix E2A Application Server Platform Mainframe Edition is IONA’s
implementation of the CORBA standard for the 0S/390 platform. Orbix E2A
Application Server Platform Mainframe Edition documentation is periodically
updated. New versions between release are available at http://

waw. i ona. cont docs.

If you need help with this or any other IONA products, contact IONA at
suppor t @ona. com Comments on IONA documentation can be sent to
doc- f eedback@ ona. com

This guide is intended for COBOL application programmers who want to
develop Orbix E2A applications in a native 0S/390 environment.

The supported compilers are:

T IBM COBOL for 0S/390 & VM version 2.1.1.
T IBM COBOL for 0S/390 & VM version 2.1.2.
T IBM COBOL for 0S/390 & VM version 2.2.1.

Xiii

PREFACE

Related Documentation

Organization of this Guide

Xiv

The related documentation provided includes:

I The PL/I Programmeris Guide and Reference, which provides details
about developing, in a native 0S/390 environment, Orbix E2A PL/I
applications that can run in batch, CICS, or IMS.

T The CORBA Programmeris Guide, C++ and the CORBA Programmeris
Reference, C++, which provide details about developing Orbix E2A
applications in C++ in various environments, including 0S/390.

T The Mainframe Migration Guide, which provides details of migration
issues for users who have migrated from IONA’s Orbix 2.3-based
solution for 0S/390 to Orbix E2A Application Server Platform
Mainframe Edition.

This guide is divided as follows:

Chapter 1, ilntroduction to Orbix E2AT
This chapter provides an introductory overview of CORBA and Orbix E2A.

Chapter 2, iGetting Started in BatchT

This chapter introduces batch application programming with Orbix E2A, by
showing how to use Orbix E2A to develop a simple distributed application
that features a COBOL client and server, each running in batch in its own
region.

Chapter 3, iGetting Started in IMST

This chapter introduces IMS application programming with Orbix E2A, by
showing how to use Orbix E2A to develop a simple distributed application
that features a COBOL client running in batch and a COBOL server running
in IMS.

Chapter 4, iGetting Started in CICST

This chapter introduces CICS application programming with Orbix E2A, by
showing how to use Orbix E2A to develop a simple distributed application

that features a COBOL client running in batch and a COBOL server running
in CICS.

PREFACE

Chapter 5, 1IDL Interfacest

The CORBA Interface Definition Language (IDL) is used to describe the
interfaces of objects in an enterprise application. An object’s interface
describes that object to potential clients through its attributes and
operations, and their signatures. This chapter describes IDL semantics and
uses.

Chapter 6, i1IDL-to-COBOL MappingT

The CORBA Interface Definition Language (IDL) is used to define interfaces
that are exposed by servers in your network. This chapter describes the
standard IDL-to-COBOL mapping rules and shows, by example, how each
IDL type is represented in COBOL.

Chapter 7, iOrbix E2A IDL Compilert

This chapter describes the Orbix E2A IDL compiler in terms of the JCL used
to run it, the COBOL members that it creates, the arguments that you can
use with it, and the configuration settings that it uses.

Chapter 8, 1API Referencet

This chapter summarizes the API functions that are defined for the Orbix
E2A COBOL runtime, in pseudo-code. It explains how to use each function,
with an example of how to call it from COBOL.

Chapter 9, iMemory HandlingT

Memory handling must be performed when using dynamic structures such
as unbounded strings, unbounded sequences, and anys. This chapter
provides details of responsibility for the allocation and subsequent release of
dynamic memory for these complex types at the various stages of an Orbix
E2A COBOL application. It first describes in detail the memory handling
rules adopted by the COBOL runtime for operation parameters relating to
different dynamic structures. It then provides a type-specific breakdown of
the APIs that are used to allocate and release memory for these dynamic
structures.

Chapter 10, iPOA Policiest

This chapter summarizes the POA policies that are supported by the Orbix
E2A COBOL runtime, and the argument used with each policy.

Chapter 11, iSystem ExceptionsT

This chapter summarizes the Orbix E2A system exceptions that are specific
to the Orbix E2A COBOL runtime

XV

PREFACE

Additional Related Resources

Typographical Conventions

XVi

The IONA knowledge base contains helpful articles, written by IONA
experts, about the Orbix and other products. You can access the knowledge
base at the following location:

htt p: // wwv i ona. cond support / kb/
The IONA update center contains the latest releases and patches for IONA

products:

http: //waw i ona. cond support/ updat e/

This guide uses the following typographical conventions:

Constant wi dth

Italic

Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
COORBA: : (hj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with jtalic words or characters.

PREFACE

Keying Conventions This guide may use the following keying conventions:

No prompt

%

{3}

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

XVii

PREFACE

Xviii

In this chapter

CHAPTER 1

Introduction to
Orbix E2A

With Orbix E2A, you can develop and deploy large-scale
enterprise-wide CORBA systems in languages such as COBOL,
PL/I, C++, and Java. Orbix E2A has an advanced modular
architecture that lets you configure and change functionality
without modifying your application code, and a rich
deployment architecture that lets you configure and manage
a complex distributed system. Orbix E2A Application Server
Platform Mainframe Edition is IONAis CORBA solution for the
0S/390 environment.

This chapter discusses the following topics:

Why CORBA? page 2
CORBA Application Basics page 6
Orbix Plug-In Design page 7
Orbix Application Deployment page 9

CHAPTER 1 |

Why CORBA?

Need for open systems

Need for high-performance
systems

Open standard solution

Widely available solution

Today’s enterprises need flexible, open information systems. Most
enterprises must cope with a wide range of technologies, operating systems,
hardware platforms, and programming languages. Each of these is good at
some important business task; all of them must work together for the
business to function.

The common object request broker architecture—CORBA—provides the
foundation for flexible and open systems. It underlies some of the Internet's
most successful e-business sites, and some of the world’s most complex and
demanding enterprise information systems.

Orbix is a CORBA development platform for building high-performance
systems. Its modular architecture supports the most demanding needs for
scalability, performance, and deployment flexibility. The Orbix architecture
is also language-independent, so you can implement Orbix applications in
COBOL, PU/I, C++, or Java that interoperate via the standard 110P protocol
with applications built on any CORBA-compliant technology.

CORBA is an open, standard solution for distributed object systems. You can
use CORBA to describe your enterprise system in object-oriented terms,
regardless of the platforms and technologies used to implement its different
parts. CORBA objects communicate directly across a network using
standard protocols, regardless of the programming languages used to create
objects or the operating systems and platforms on which the objects run.

CORBA solutions are available for every common environment and are used
to integrate applications written in C, C++, Java, Ada, Smalltalk, COBOL,
and PL/I running on embedded systems, PCs, UNIX hosts, and mainframes.
CORBA objects running in these environments can cooperate seamlessly.
Through COMet, IONA’s dynamic bridge between CORBA and COM, they
can also interoperate with COM objects. CORBA offers an extensive
infrastructure that supports all the features required by distributed business
objects. This infrastructure includes important distributed services, such as
transactions, messaging, and security.

CORBA Objects

Nature of abstract CORBA objects

Object references

IDL interfaces

CORBA objects are abstract objects in a CORBA system that provide
distributed object capability between applications in a network. Figure 1
shows that any part of a CORBA system can refer to the abstract CORBA
object, but the object is only implemented in one place and time on some
server of the system.

/ N
\) A server
S /\ implements a
CORBA object
Clients access
-~ CORBA
/ . .
y ___objects via
- / object
references
/T
\ IDL interface definitions

« _ 7 specify CORBA objects

Figure 1: The Nature of Abstract CORBA Objects

An object reference is used to identify, locate, and address a CORBA object.
Clients use an object reference to invoke requests on a CORBA object.
CORBA objects can be implemented by servers in any supported
programming language, such as COBOL, PL/I, C++, or Java.

Although CORBA objects are implemented using standard programming
languages, each CORBA object has a clearly-defined interface, specified in
the CORBA Interface Definition Language (IDL). The interface definition
specifies which member functions, data types, attributes, and exceptions
are available to a client, without making any assumptions about an object’s
implementation.

CHAPTER 1 |

Advantages of IDL

To call member functions on a CORBA object, a client programmer needs
only to refer to the object’s interface definition. Clients use their normal
programming language syntax to call the member functions of a CORBA
object. A client does not need to know which programming language
implements the object, the object’s location on the network, or the operating
system in which the object exists.

Using an IDL interface to separate an object’s use from its implementation
has several advantages. For example, it means that you can change the
programming language in which an object is implemented without affecting
the clients that access the object. It also means that you can make existing
objects available across a distributed network.

Object Request Broker

Overview

Role of an ORB

CORBA defines a standard hitecture for object request brokers (ORB). An
ORB is a software component that mediates the transfer of messages from a
program to an object located on a remote network host. The ORB hides the
underlying complexity of network communications from the programmer.
With a few calls to an ORB's application programming interface (API),
servers can make CORBA objects available to client programs in your
network.

An ORB lets you create standard software objects whose member functions
can be invoked by client programs located anywhere in your network. A
program that contains instances of CORBA objects is often known as a
server. However, the same program can serve at different times as a client
and a server. For example, a server program might itself invoke calls on
other server programs, and so relate to them as a client.

When a client invokes a member function on a CORBA object, the ORB
intercepts the function call. As shown in Figure 2 on page 6, the ORB
redirects the function call across the network to the target object. The ORB
then collects results from the function call and returns these to the client.

2 provides a graphical overview of the role of the ORB in d
k communications.

-

CORBA Application Basics

Developing application interfaces

Client invocations on CORBA
objects

You start developing a CORBA application by defining interfaces to objects
in your system in CORBA IDL. You compile these interfaces with an IDL
compiler. An IDL compiler can generate COBOL, PL/I, C++, or Java from
IDL definitions. Generated COBOL and PL/I consists of server skeleton code,
which you use to implement CORBA objects.

When an Orbix E2A COBOL client on 0S/390 calls a member function on a
CORBA object on another platform, the call is transferred through the
COBOL runtime to the ORB. (The client invokes on object references that it
obtains from the server process.) The ORB then passes the function call to
the server.

When a CORBA client on another platform calls a member function on an
Orbix E2A COBOL server object on 0S390, the ORB passes the function call
through the COBOL runtime and then through the server skeleton code to
the target object.

CHAPTER 1 |

Orbix Plug-In Design

Overview

Plug-ins

ORB core

Orbix has a modular plug-in architecture. The ORB core supports abstract
CORBA types and provides a plug-in framework. Support for concrete
features like specific network protocols, encryption mechanisms, and
database storage is packaged into plug-ins that can be loaded into the ORB,
based on runtime configuration settings.

A plug-in is a code library that can be loaded into an Orbix application at
runtime. A plug-in can contain any type of code; typically, it contains
objects that register themselves with the ORB runtimes to add functionality.

Plug-ins can be linked directly with an application, loaded when an
application starts up, or loaded on-demand while the application is running.
This gives you the flexibility to choose precisely those ORB features that you
actually need. Moreover, you can develop new features such as protocol
support for direct ATM or HTTPNG. Because ORB features are configured
into the application rather than compiled in, you can change your choices
as your needs change without rewriting or recompiling applications.

For example, an application that uses the standard 11OP protocol can be
reconfigured to use the secure SSL protocol simply by configuring a different
transport plug-in. There is no particular transport inherent to the ORB core;
you simply load the transport set that suits your application best. This
architecture makes it easy for IONA to support additional transports in the
future such as multicast or special purpose network protocols.

The ORB core presents a uniform programming interface to the developer:
everything is a CORBA object. This means that everything appears to be a
local COBOL, PL/I, C++, or Java object within the process, depending on
which language you are using. In fact it might be a local object, or a remote
object reached by some network protocol. It is the ORB'’s job to get
application requests to the right objects no matter where they are located.

To do its job, the ORB loads a collection of plug-ins as specified by ORB
configuration settings—either on startup or on demand—as they are needed
by the application. For remote objects, the ORB intercepts local function
calls and turns them into CORBA requests that can be dispatched to a
remote object across the network via the standard IIOP protocol.

CHAPTER 1 |

Orbix Application Deployment

Overview Orbix provides a rich deployment environment designed for high scalability.
You can create a location domain that spans any number of hosts across a
network, and can be dynamically extended with new hosts. Centralized
domain management allows servers and their objects to move among hosts
within the domain without disturbing clients that use those objects. Orbix
supports load balancing across object groups. A configuration domain
provides the central control of configuration for an entire distributed
application.

Orbix offers a rich deployment environment that lets you structure and
control enterprise-wide distributed applications. Orbix provides central
control of all applications within a common domain.

In this section This section discusses the following topics:
Location Domains page 10
Configuration Domains page 11

10

Location Domains

Overview

Locator daemon

Node daemon

A location domain is a collection of servers under the control of a single
locator daemon. An Orbix location domain consists of two components: a
locator daemon and a node daemon.

Note: See the CORBA Administratoris Guide for more details about
these.

The locator daemon can manage servers on any number of hosts across a
network. The locator daemon automatically activates remote servers through
a stateless activator daemon that runs on the remote host.

The locator daemon also maintains the implementation repository, which is
a database of available servers. The implementation repository keeps track
of the servers available in a system and the hosts they run on. It also
provides a central forwarding point for client requests. By combining these
two functions, the locator lets you relocate servers from one host to another
without disrupting client request processing. The locator redirects requests
to the new location and transparently reconnects clients to the new server
instance. Moving a server does not require updates to the naming service,
trading service, or any other repository of object references.

The locator can monitor the state of health of servers and redirect clients in
the event of a failure, or spread client load by redirecting clients to one of a
group of servers.

The node daemon acts as the control point for a single machine in the
system. Every machine that will run an application server must be running a
node daemon. The node daemon starts, monitors, and manages the
application servers running on that machine. The locator daemon relies on
the node daemons to start processes and inform it when new processes
have become available.

11

CHAPTER 1 |

Configuration Domains

Overview

Plug-in design

12

A configuration domain is a collection of applications under common
administrative control. A configuration domain can contain multiple location
domains. During development, or for small-scale deployment, configuration
can be stored in an ASCII text file, which is edited directly.

The configuration mechanism is loaded as a plug-in, so future configuration
systems can be extended to load configuration from any source such as
example HTTP or third-party configuration systems.

In this chapter

CHAPTER 2

Getting Started in
Batch

This chapter introduces batch application programming with
Orbix E2A, by showing how to use Orbix E2A to develop a
simple distributed application that features a COBOL client
and server, each running in its own region.

This chapter discusses the following topics:

Overview and Setup Requirements page 14
Developing the Application Interfaces page 19
Developing the Server page 24
Developing the Client page 35
Running the Application page 42
Application Address Space Layout page 47

Note: The example provided in this chapter does not reflect a real-world
scenario that requires the Orbix E2A Application Server Platform
Mainframe Edition, because the supplied client and server are written in
COBOL and running on 0S/390. The example is supplied to help you
quickly familiarize with the concepts of developing a batch COBOL
application with Orbix E2A.

13

CHAPTER 2 |

Overview and Setup Requirements

Introduction

Steps to create an application

The Simple demonstration

14

This section provides an overview of the main steps involved in creating an
Orbix E2A COBOL application. It describes important steps that you must
perform before you begin. It also introduces the supplied SI MPLE
demonstration, and outlines where you can find the various source code and
JCL elements for it.

The main steps to create an Orbix E2A COBOL application are:

Step Action

1 | “Developing the Application Interfaces” on page 19.

2 | “Developing the Server” on page 24.

3 | “Developing the Client” on page 35.

This chapter describes in detail how to perform each of these steps.

This chapter describes how to develop a simple client-server application

that consists of:

T An Orbix E2A COBOL server that implements a simple persistent
POA-based server.

T An Orbix E2A COBOL client that uses the clearly defined object
interface, Si npl ehj ect, to communicate with the server.

The client and server use the Internet Inter-ORB Protocol (I1OP), which runs
over TCP/IP, to communicate. As already stated, the SI MPLE demonstration
is not meant to reflect a real-world scenario requiring the Orbix E2A
Application Server Platform Mainframe Edition, because the client and
server are written in the same language and running on the same platform.

The demonstration server

The demonstration client

Location of supplied code and JCL

The server accepts and processes requests from the client across the
network. It is a batch server that runs in its own region.

See “Location of supplied code and JCL" on page 15 for details of where
you can find an example of the supplied server. See “Developing the Server”
on page 24 for more details of how to develop the server.

The client runs in its own region and accesses and requests data from the
server. When the client invokes a remote operation, a request message is
sent from the client to the server. When the operation has completed, a
reply message is sent back to the client. This completes a single remote
CORBA invocation.

See “Location of supplied code and JCL" on page 15 for details of where
you can find an example of the supplied client. See “Developing the Client”
on page 35 for more details of how to develop the client.

All the source code and JCL components needed to create and run the batch
SI MPLE demonstration have been provided with your installation. Apart from
site-specific changes to some JCL, these do not require editing.

Table 1 provides a summary of the supplied code elements and JCL
components that are relevant to the batch SI MPLE demonstration (where
or bi xhl g represents your installation’s high-level qualifier).

Table 1: Supplied Code and JCL (Sheet 1 of 2)

Location

Description

or bi xhl q. DEM3S. | DL(S| MPLE)

This is the supplied IDL.

or bi xhl gq. DEMS. CCBOL. SR S| MPLESV) This is the source code for the batch server mainline
program.
or bi xhl gq. DEMDS. CCBCOL. SR Sl MPLES) This is the source code for the batch server

implementation program.

or bi xhl gq. DEMDS. CCBOL. SRQ(S| MPLEQL) This is the source code for the client program.

or bi xhl g. JOL(LOCATCR)

This JCL runs the Orbix E2A locator daemon.

or bi xhl q. JOL(NCDEDAEM)

This JCL runs the Orbix E2A node daemon.

15

CHAPTER 2 |

Table 1: Supplied Code and JCL (Sheet 2 of 2)

Location Description

or bi xhl g. DEMOS. GOBCL. BU LD. JCL(SI MPLI DL) This JCL runs the Orbix E2A IDL compiler, to
generate COBOL source and copybooks for the batch
server. The - Sand -z compiler arguments, which
generate server mainline and server implementation
code respectively, are disabled by default in this JCL.

or bi xhl g. DEMOS. CCBQL. BU LD. JOL(S| MPLECB) This JCL compiles the client program.

or bi xhl g. DEMDS. GOBCL. BU LD. JO.(SI MPLESB) This JCL compiles and links the batch server
mainline and batch server implementation programs.

or bi xhl g. DEMOS. GCBCL. RUN. JOL(SI MPLESV) This JCL runs the server.

or bi xhl g. DEMDS. CCBCL. BU LD. JOL(SI MPLEQL) This JCL runs the client.

Note: Other code elements and JCL components are provided for the IMS
and CICS versions of the SI MPLE demonstration. See “Getting Started in
IMS” on page 49 and “Getting Started in CICS” on page 83 for more
details of these.

Supplied copybooks Table 2 provides a summary of the various copybooks supplied with your
product installation that are relevant to batch. In Table 2, servers means
batch servers, and clients means batch clients. Again, or bi xhl q represents
your installation’s high-level qualifier.

Table 2: Supplied Copybooks (Sheet 1 of 2)

Location Description

or bi xhl g. | NCLUDE. OCPYLI B(OHKERRS) This contains a COBOL function that can be called
both by clients and servers to check if an exception
has occurred, and to report that exception.

or bi xhl g. | NCLUDE. CCPYLI B(OCRBA) This is used both by clients and servers. It contains
various Orbix E2A COBOL definitions, such as
REQUEST- | NFO used by the COAREQfunction, and

CRBI X- STATUS- | NFCRVATI ON'which is used to register
and report exceptions raised by the COBOL runtime.

16

Table 2: Supplied Copybooks (Sheet 2 of 2)

Location Description
or bi xhl g. | NOLUDE. GCPYLI B(CCRBATYP) This is used both by clients and servers. It contains
the COBOL typecode representation for IDL basic
types.
or bi xhl g. I NCLUDE. OCPYLI B(| CRSLCT) This is used both by clients and servers. It contains

the COBOL SELECT statement entry for file
processing, for use with the QCPY. REPLAQ NG
statement.

or bi xhl g. I NCLUDE. GCPYLI B(| CRFD) This is used both by clients and servers. It contains
the COBOL FD statement entry for file processing, for
use with the OCPY. REPLAQ NG statement.

or bi xhl g. | NOLUDE. GCPYLI B(CHKFI LE) This is used both by clients and servers. It is used for
file handling error checking.

or bi xhl g. I NCLUDE. GCPYLI B(PROCPARY) This is used both by clients and servers. It contains
the appropriate definitions for a COBOL program to
accept parameters from the JCL for use with the
CRBARGS API (that is, the ar gurrent - stri ng
parameter).

or bi xhl gq. DEMOS. OCBCL. OCPYLI B This PDS is used to store all batch copybooks
generated by the Orbix E2A IDL compiler when you
run the supplied S MPLI DL JCL for the batch
demonstration. It also contains copybooks with
Working Storage data definitions and Procedure
Division paragraphs for use with the bank, naming,
and nested sequences demonstrations.

Note: Some other copybooks are provided specifically for use with IMS.
See “Getting Started in IMS” on page 49 for more details of these.

17

CHAPTER 2 |

Checking JCL components

18

When creating the SI MPLE application, check that each step involved within
the separate JCL components completes with a condition code of zero. If the
condition codes are not zero, establish the point and cause of failure. The

most likely cause is the site-specific JCL changes required for the compilers.

Ensure that each high-level qualifier throughout the JCL reflects your
installation.

Developing the Application Interfaces

Overview

Steps to develop application
interfaces

This section describes the steps you must follow to develop the IDL
interfaces for your application. It first describes how to define the IDL

interfaces for the objects in your system. It then describes how to generate

COBOL source and copybooks from IDL interfaces, and provides a
description of the members generated from the supplied Si npl eChj ect
interface.

The steps to develop the interfaces to your application are:

Step Action

1 | Define public IDL interfaces to the objects required in your
system.

See “Defining IDL Interfaces” on page 20.

2 | Use the Orbix E2A IDL compiler to generate COBOL source
code and copybooks from the defined IDL.

See “Generating COBOL Source and Copybooks” on page 21.

19

CHAPTER 2 |

Defining IDL Interfaces

Defining the IDL

Explanation of the IDL

How the demonstration uses
this IDL

20

The first step in writing an Orbix E2A program is to define the IDL interfaces
for the objects required in your system. The following is an example of the
IDL for the Si npl ebj ect interface that is supplied in

or bi xhl q. DEM3B. | DL(S| MPLE) :

/] 1DC
nmodul e Sinpl e
{ interface SinpleCj ect
{
voi d
call _me();
e

The preceding IDL declares a Si npl ehj ect interface that is scoped (that is,
contained) within the Si npl e module. This interface exposes a single

cal | _me() operation. This IDL definition provides a language-neutral
interface to the CORBA Si npl e: : Si npl e(hj ect type.

For the purposes of this example, the Si npl etbj ect CORBA object is
implemented in COBOL in the supplied SI MPLES server application. The
server application creates a persistent server object of the Si npl e(oj ect
type, and publishes its object reference to a PDS member. The client
application must then locate the Si npl e(oj ect object by reading the
interoperable object reference (IOR) from the relevant PDS member. The
client invokes the cal | _ne() operation on the Si npl e(oj ect object, and
then exits.

Generating COBOL Source and Copybooks

The Orbix E2A IDL compiler

Orbix E2A IDL compiler
configuration

Running the Orbix E2A IDL
compiler

Generated source code members

You can use the Orbix E2A IDL compiler to generate COBOL source and
copybooks from IDL definitions.

The Orbix E2A IDL compiler uses the Orbix E2A configuration member for
its settings. The SI MPLI DL JCL that runs the compiler uses a configuration
member provided in or bi xhl g. CONFI (1 DL) . See “Orbix E2A IDL Compiler”
on page 237 for more details.

The COBOL source for the batch server demonstration described in this
chapter is generated in the first step of the following job:

or bi xhl g. DEMOS. CCBCL. BU LD. JOL(S| MPLI DL)

Table 3 shows the server source code members that the Orbix E2A IDL
compiler generates, based on the defined IDL.

Table 3: Generated Server Source Code Members

Member JCL Keyword

Parameter

Description

i dl menber naneS | MPL This is the server implementation
source code member. It contains
stub paragraphs for all the

callable operations.

The is only generated if you
specify the - Z argument with the
IDL compiler.

This is server mainline source
code member.

i dl menber nanesSv

This is only generated if you
specify the - S argument with the
IDL compiler.

21

CHAPTER 2 |

Note: For the purposes of this example, the SI MPLES server
implementation and SI MPLESV server mainline are already provided in your
product installation. Therefore, the IDL compiler arguments that are used
to generate them are not specified in the supplied SI MPLI DL JCL. See
“Orbix E2A IDL Compiler” on page 237 for more details of the IDL
compiler arguments used to generate server source code.

Generated COBOL copybooks Table 4 shows the COBOL copybooks that the Orbix E2A IDL compiler
generates, based on the defined IDL.

Table 4: Generated COBOL Copybooks

Copybook JCL Keyword Description
Parameter
i dl menber nane QCPYLI B This copybook contains data

definitions that are used for
working with operation
parameters and return values for
each interface defined in the IDL
member.

The name for this copybook does
not take a suffix.

i dl menber naneXx CCPYLI B This copybook contains data
definitions that are used by the
COBOL runtime to support the
interfaces defined in the IDL
member.

This copybook is automatically
included in the i dl nenber nane
copybook.

i dl menber naneD | OCPYLIB This copybook contains
procedural code for performing
the correct paragraph for the
requested operation.

This copybook is automatically
included in the i dl nrenber naneS
source code member.

22

How IDL maps to COBOL
copybooks

Member name restrictions

Location of demonstration
copybooks

Each IDL interface maps to a group of COBOL data definitions. There is one
definition for each IDL operation. A definition contains each of the
parameters for the relevant IDL operation in their corresponding COBOL
representation. See “IDL-to-COBOL Mapping” on page 161 for details of
how IDL types map to COBOL.

Attributes map to two operations (get and set), and readonly attributes map
to a single get operation.

Generated source code member and copybook names are based on the IDL
member name. If the IDL member name exceeds six characters, the Orbix
E2A IDL compiler uses only the first six characters of the IDL member name
when generating the other member names. This allows space for appending
the two-character sv suffix to the name for the server mainline member,
while allowing it to adhere to the eight-character maximum size limit for
0S/390 member names. Consequently, all other member names also use
only the first six characters of the IDL member name, followed by their
individual suffixes, as appropriate.

You can find examples of the copybooks generated for the SI MPLE
demonstration in the following locations:

T orbixhl g. DEMS. COBCL. GOPYLI B(S| MPLE)
T orbi xhl g. DEM3S. GOBCL. GOPYLI B(S| MPLEX)

T orbi xhl q. DEMOS. GOBOL. CCPYLI B(S| MPLED)

Note: These copybooks are not shipped with your product installation.
They are generated when you run the supplied SI MPLI DL JCL, to run the
Orbix E2A IDL compiler.

23

CHAPTER 2 |

Developing the Server

Overview

Steps to develop the server

24

This section describes the steps you must follow to develop the batch server
executable for your application.

The steps to develop the server application are:

Step Action

1 | “Writing the Server Implementation” on page 25

2 | “Writing the Server Mainline” on page 28

3 | “Building the Server” on page 34.

Writing the Server Implementation

The server implementation
program

Example of the SIMPLES program

You must implement the server interface by writing a COBOL program that
implements each operation in the i dl menber nane copybook. For the
purposes of this example, you must write a COBOL program that
implements each operation in the SI MPLE copybook. When you specify the
- Z argument with the Orbix E2A IDL compiler in this case, it generates a
skeleton program called SI MPLES, which is a useful starting point.

The following is an example of the batch SI MPLES program:

Example 1: The Batch SIMPLES Demonstration (Sheet 1 of 2)

khkkkkkkhhhhhkkhhhhhhkhhhhhhhkhhhhhhkhkhhhhhhkhkhhhhkhhhhhhkhkkkhhhkkkkhk*

* |dentification Division

EEE R R SRR SR SRS SRR SRR SRR R R R SRR RS RE R EEEEEEEEEEEEEES
| DENTI FI CATION DV SION

PROGRAM | D. SI MPLES.

ENVI RONVENT D VI SI ON
DATA D'VI SI ON
WRKI NG STCRAGE SECTI ON

QCPY SI MPLE

QCPY CCRBA

01 W& | NTERFACE- NAMVE PI CTURE X(30).

01 W& | NTERFACE- NAVE- LENGTH Pl CTURE 9(09) Bl NARY

VALUE 30.

Khkkhhkhkkhkhhhhkhkhhhhhkkkhhhhkhkhkkhhhkhkkhhhhkhkkhhhkkkkhhhkhkkkhhhhkkkkhkk

* Procedure D vision

D X
PROCEDURE D'V SI ON

ENTRY " DI SPATCH'.

CALL " COAREQ USI NG REQUEST- | NFQ

SET W5- COAREQ TO TRUE
PERFCRM CHECK- STATUS.

25

CHAPTER 2 |

Example 1: The Batch SIMPLES Demonstration (Sheet 2 of 2)

3 * Resolve the pointer reference to the interface nane which is
* the fully scoped interface nane
* Note make sure it can handl e the nax interface name | ength
CALL " STRCGET" US| NG | NTERFACE- NAME
W\B- | NTERFACE- NAME- LENGTH
V- | NTERFACE- NAME.
SET W& STREGET TO TRUE.
PERFORM CHECK- STATUS.

LR E R RS RS EEEEEE SRR EEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]

* Interface(s) evaluation:

R SRR R S S SRS RS SRR RS S SRR S E R RS SRR SRR R RS EEEEEEEEEEEEEEEE]

MOVE SPACES TO S| MPLE- SI MPLECBIECT- CPERATI ON

EVALUATE W& | NTERFACE- NAVE
WHEN ' | DL: Si npl e/ Si npl eChj ect: 1. 0

4 * Resolve the pointer reference to the operation infornation

CALL "STRCET" USI NG CPERATI ON- NAMVE

S| MPLE- S- 3497- CPERATI ON- LENGTH

SI MPLE- S| MPLECBJECT- CPERATI ON
SET W5 STRCGET TO TRUE
PERFCORM CHECK- STATUS
D SPLAY "Sinple::" S MPLE-SI MPLECBIECT- CPERATI ON

"i nvoked"

END- EVALUATE.

5 COCPY S| MPLED.
GCBAKK

6 DO S| MPLE- S| MPLECBIECT- CALL- ME
CALL " OCOAGET" USI NG SI MPLE- SI MPLECBJECT- 70FE- ARGS.
SET W&- CQACET TO TRUE
PERFCRM CHECK- STATUS.

CALL " QQoAPUT" USI NG SI MPLE- SI MPLECBJECT- 70FE- ARGS.
SET W& COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

o

* Check Errors Copybook

khkkkhkhkkhkhkhkhkhkhkhhhkhkhkhhhhhkhkhhhhhhkhhhhhhkhhhhhhkhhkhhhhkhkhhhhhkhkhkkhhhhkhkhkkxx

CCPY GHKERRS.

26

Explanation of the batch The SI MPLES program can be explained as follows:

SIMPLES program 1.

The DI SPATCH logic is automatically coded for you, and the bulk of the
code is contained in the SI MPLED copybook. When an incoming request
arrives from the network, it is processed by the ORB and a call is made
to the DI SPATCH entry point.

QQAREQIs called to provide information about the current invocation
request, which is held in the REQUEST- | NFOblock that is contained in
the OCRBA copybook.

QOOAREQIs called once for each operation invocation—after a request
has been dispatched to the server, but before any calls are made to
access the parameter values.

STRCGET is called to copy the characters in the unbounded string pointer
for the interface name to the string item representing the fully scoped
interface name.

STRGET is called again to copy the characters in the unbounded string
pointer for the operation name to the string item representing the
operation name.

The procedural code used to perform the correct paragraph for the
requested operation is copied into the program from the Sl MPLED
copybook.

Each operation has skeleton code, with appropriate calls to COAPUT and
QOAGET to copy values to and from the COBOL structures for that
operation’s argument list. You must provide a correct implementation
for each operation. You must call CQAGET and CGOAPUT, even if your
operation takes no parameters and returns no data. You can simply
pass in a dummy area as the parameter list.

Note: The supplied SI MPLES program is only a suggested way of
implementing an interface. It is not necessary to have all operations
implemented in the same COBOL program.

Location of the batch SIMPLES You can find a complete version of the batch SI MPLES server implementation
program program in or bi xhl q. DEMDS. OCBCL. SRQ(S| MPLES) .

27

CHAPTER 2 |

Writing the Server Mainline

The server mainline program The next step is to write the server mainline program in which to run the
server implementation. For the purposes of this example, when you specify
the - S argument with the Orbix E2A IDL compiler, it generates a program
called SI MPLESV, which contains the server mainline code.

Example of the batch SIMPLESV The following is an example of the batch SI MPLESV program:
program

Example 2: The Batch SIMPLESV Demonstration (Sheet 1 of 4)

| DENTI FI CATI CN D' M SI ON

PROGRAM | D. S| MPLESV.

ENVI RONMVENT DM SI ON

I NPUT- QUTPUT SECTI ON

FI LE- CONTRCL.

QCPY | CRSLCT REPLAG NG

"X-1CR' BY SI MPLE- S| MPLECBIECT- | CR
"X-1CRFI LE' BY "I CRFI LE'
"X-1 R STAT" BY S| MPLE- SI MPLECBIECT- | CR- STAT.

DATA DM SI ON

FI LE SECTI O\

QCPY | ORFD REPLACI NG
"X-1CR' BY S| MPLE- SI MPLECBIECT- | CR
"X-REC' BY SI MPLE- S| MPLECBJECT- REC.

WCRKI NG STCRAGE SECTI ON

QCPY S| MPLE.

QCPY CORBA

01 ARG LI ST Pl CTURE X(01)
VALUE SPACES.

01 ARG LI ST-LEN Pl CTURE 9(09) Bl NARY
VALLE 0.

01 CRB- NAME Pl CTURE X(10)
VALLE "si npl e_orb".

01 ORB- NAME- LEN Pl CTURE 9(09) Bl NARY
VALLE 10.

01 SERVER NAME Pl CTURE X(18)

VALLE "si npl e_persi stent "

28

Example 2: The Batch SIMPLESV Demonstration (Sheet 2 of 4)

01 SERVER- NAME- LEN Pl CTURE 9(09) Bl NARY
VALLE 17.
01 | NTERFACE- LI ST.
03 FI LLER Pl CTURE X(28)
VALLE "1 DL: Sinpl e/ Si npl eChject: 1.0 ".
01 | NTERFACE- NAMES- ARRAY REDEFI NES | NTERFACE- LI ST.
03 | NTERFACE- NAME OOOURS 1 Tl MES Pl CTURE X(28).

01 CBIJECT-ID-LI ST.
03 F LLER Pl CTURE X(17)
VALLE "ny_si npl e_obj ect ".
01 CBIJECT-| D ARRAY REDEFI NES CBJECT- | D LI ST.
03 CBJECT- | DENTI FI ER OOOURS 1 TI MES PI CTURE X(17).

01 | OR REG LEN Pl CTURE 9(09) Bl NARY
VALUE 2048.

01 | OR REG PTR PO NTER
VALUE NULL.

D R

* Status and (bj values for the Interface(s)

LR R R R R R R TR R RS R R EEEEEEE R TR EEEEEEEEEEEEEEEEEEEEE]

01 Sl MPLE- SI MPLECBIECT- | OR- STAT Pl CTURE 9(02) .
01 SI MPLE-SI MPLECBIECT- CBJ PQA NTER
VALUE NULL.

CCPY PROCCPARM

INT.
CALL " CRBSTAT" USI NG CRBI X- STATUS- | NFCRVATI O\
DI SPLAY "“Initializing the CRB'.

CALL " CRBARGS! USI NG ARG LI ST
ARG LI ST- LEN
CRB- NAMVE
CRB- NAMVE- LEN

SET W5 CRBARGS TO TRUE

PERFCRM CHECK- STATUS.

CALL " CRBSRWR! USI NG SERVER- NAVE

SERVER- NAME- LEN
SET W& CRBSRVR TO TRUE

29

CHAPTER 2 |

Example 2: The Batch SIMPLESV Demonstration (Sheet 2 of 4)

01 SERVER NAME- LEN PI CTURE 9(09) Bl NARY
VALUE 17.
01 | NTERFACE- LI ST.
03 FILLER Pl CTURE X(28)
VALLE "I DL: Sinpl e/ Sinpl eChject:1.0 ".
01 | NTERFACE- NAMES- ARRAY REDEFI NES | NTERFACE- LI ST.
03 | NTERFACE- NAME QOCURS 1 TI MES Pl CTURE X(28).

01 GBIECT-| D-LI ST.
03 FI LLER PI CTURE X(17)
VALUE "ny_sinpl e_object ".
01 CBIECT- | D ARRAY REDEFI NES CBJECT- I D- LI ST.
03 COBJECT- | DENTI FI ER QCOURS 1 TI MES PI CTURE X(17).

01 | OR REG LEN Pl CTURE 9(09) Bl NARY
VALUE 2048.

01 | R REG PTR PO NTER
VALUE NULL.

B R R R

* Status and (bj values for the Interface(s)

khkkkkkhkhhkhkhkhkhkhhhkhkhkhhhhhkhkhhhhhhkhhhhhhkhhhhhhkhhhhhhkhkdhhhhkhkhdhrhkhkhkxx

01 S| MPLE-SI MPLECBIECT- | CR- STAT Pl CTURE 9(02) .
01 SI MPLE- SI MPLECBIECT- CBJ PQ NTER
VALUE NULL.

CCPY PROCPARM
INT.
1 CALL " CRBSTAT" USI NG CRBI X- STATUS- | NFCRVATI ON
DI SPLAY "Initializing the CRB'.

2 CALL " CRBARGS! USI NG ARG LI ST
ARG LI ST- LEN
CRB- NAME
CRB- NAME- LEN
SET W5 CRBARGS TO TRUE
PERFCRM CHECK- STATUS.

3 CALL "CRBSRWR' USI NG SERVER- NAMVE

SERVER- NAME- LEN
SET W& CRBSRVR TO TRUE

30

Example 2: The Batch SIMPLESV Demonstration (Sheet 3 of 4)

PERFCRM CHECK- STATUS.

D R R X

* |Interface Section Bl ock

LR R R R RS R SRR EE]

* Cenerating |CR for interface S npl e/ S npl eChj ect
DI SPLAY "Regi stering the Interface".

CALL " CRBREG' USI NG SI MPLE- SI MPLECBJECT- | NTERFACE.
SET W5- CRBREG TO TRUE.

CPEN QUTPUT S| MPLE- S| MPLECBJECT- | CR
CCPY CGKFI LE REPLAC NG
"X-1 CR STAT" BY S| MPLE- S| MPLECBJECT- | CR- STAT.

DI SPLAY "Creating the (hject".
CALL " CBINEW US| NG SERVER NAMVE
| NTERFACE- NAME
CF | NTERFACE- NAMES- ARRAY(1)
CBJECT- | DENTI FI ER
CF CBIECT- | D- ARRAY(1)
S| MPLE- S| MPLECBJECT- CBJ.
SET W& CBINEW TO TRUE.
PERFORM CHECK- STATUS.

CALL "CBITCSTR' USI NG S| MPLE- SI MPLECBIECT- CBJ
| OR REC- PTR

SET W& GBITCSTR TO TRUE

PERFCRM CHECK- STATUS.

CALL " STRCGET" USI NG | CR REC- PTR

| OR REC LEN

S| MPLE- SI MPLECBIECT- REC.
SET W& STRGET TO TRUE
PERFCRM CHECK- STATUS.

CALL "STRFREE' USING | CR REG PTR

SET W5 STRFREE TO TRUE

PERFORM CHECK- STATUS.

DI SPLAY "Witing object reference to file".

WR TE SI MPLE- SI MPLECBJECT- REC.

31

CHAPTER 2 |

Explanation of the batch
SIMPLESV program

32

Example 2: The Batch SIMPLESV Demonstration (Sheet 4 of 4)

QCPY CGKFl LE REPLAC NG
"X-1 OR- STAT" BY SI MPLE- SI MPLECBJECT- | CR- STAT.

CLCSE SI MPLE- S| MPLECBIECT- | CR
QCPY GKFl LE REPLAC NG
"X 1 OR- STAT" BY SI MPLE- S| MPLECBIJECT- | CR- STAT.

Dl SPLAY "G ving control to the CRB to process Requests".
CALL "OQARWN'.

SET W5 COARWIN TO TRUE.

PERFCRM CHECK- STATUS.

CALL "CBIREL" USI NG SI MPLE- SI MPLECBJECT- CBJ.
SET Ws- CBJREL TO TRUE.
PERFCRM CHECK- STATUS.

EXI T- PRG
STCP RUN

LR EEE R R RS EEEEEEEE RS EEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]

* Check Errors Copybook

R R R RS SRR RS SRR RS SRR E SRR EE R EEEEEEEEEEEEEEEEEEEEEES]

CCPY GKERRS.

The SI MPLESV program can be explained as follows:

1. CORBSTAT is called to register the ORBI X- STATUS- | NFCRVATI ON block that
is contained in the OGCRBA copybook. Registering the
CRBI X- STATUS- | NFCRVATI ON block allows the COBOL runtime to
populate it with exception information, if necessary.

2. ORBARGSis called to initialize a connection to the ORB.

3. CORBSRWRIs called to set the server name.

4. ORBREGIS called to register the IDL interface, Si npl eoj ect, with the
Orbix COBOL runtime.

B. CBINEWis called to create a persistent server object of the
Si npl ehj ect type, with an object ID of ny_si npl e_obj ect .

6. OBITCSTRIs called to translate the object reference created by CBINEW
into a stringified IOR. The stringified IOR is then written to the | CRFI LE
member.

7.

QOOARWN is called, to enter the GRB: : run loop, to allow the ORB to
receive and process client requests.

33

CHAPTER 2 |

Building the Server

Location of the JCL Sample JCL used to compile and link the batch server mainline and server
implementation is in or bi xhl g. DEMCS. OOBCL. BU LD. JO(S| MPLESB) .

Resulting load module When this JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMOS. QOBQL. LQAD(SI MPLESV) .

34

Developing the Client

Overview

Steps to develop the client

This section describes the steps you must follow to develop the client
executable for your application.

Note: The Orbix E2A IDL compiler does not generate COBOL client stub

code.

The steps to develop the client application are:

Step Action
1 | “Writing the Client” on page 36.
2 | “Building the Client” on page 41.

35

CHAPTER 2 |

Writing the Client

The client program

Example of the SIMPLECL
program

36

The next step is to write the client program, to implement the client. This
example uses the supplied SI MPLEQL client demonstration.

The following is an example of the S| MPLECL program:

Example 3: The SIMPLECL Demonstration Program (Sheet 1 of 3)

| DENTI FI CATI CN D' M SI ON
PROGRAM | D. SI MPLECL.

ENVI RONVENT D'V SI ON
CONFlI GURATI OGN SECTI ON
I NPUT- QUTPUT SECTI ON
FI LE- CONTRCL.
QCPY | CRSLCT REPLAC NG
"X-1CR' BY SI MPLE- S| MPLECBIECT- | CR
"X-1CRFI LE' BY "I CRFI LE!
"X- 1 OR- STAT" BY SI MPLE- SI MPLECBJECT- | CR- STAT.
DATA DM SI ON
FI LE SECTI ON

QCPY | CRFD REPLACI NG
"X-1CR' BY S| MPLE- SI MPLECBIECT- | CR
"X-REC' BY S| MPLE- SI MPLECBIECT- REC.

WRKI NG STCRAGE SECTI ON

QOPY S MPLE.

OOPY CCRBA

01 W& S| MPLE-1 CR Pl CTURE X(2048) .

01 S| MPLE- | OR LENGTH Pl CTURE 9(9) BI NARY
VALUE 2048.

01 S| MPLE- S| MPLECBJECT- | GR STAT Pl CTURE 9(02).

01 S| MPLE- S| MPLECBJECT- CBJ PO NTER
VALUE NULL.

01 ARG LIST Pl CTURE X(1)
VALUE SPACES.

01 ARG LI ST- LEN Pl CTURE 9(09) Bl NARY
VALLE 0.

Example 3: The SIMPLECL Demonstration Program (Sheet 2 of 3)

01 CRB-NAME Pl CTURE X(10)
VALLE "si npl e_orb".
01 CRB- NAME- LEN PI CTURE 9(09) Bl NARY
VALUE 10.
01 | OR REG PTR PA NTER
VALUE NULL.
01 | OR REG LEN Pl CTURE 9(09) Bl NARY
VALUE 2048.

QCPY PROCPARM

*

CALL "CRBSTAT" USI NG CRBI X- STATUS- | NFCRVATI O\

CRB initialization

DI SPLAY "Initializing the CRB".

CALL "CRBARGS' USING ARG LI ST
ARG LI ST- LEN
CRB- NAMVE
CRB- NAMVE- LEN

SET W5 CRBARGS TO TRUE

PERFORM CHECK- STATUS.

* Register interface TypeTest

* %

* %

DI SPLAY "Regi stering the Interface".

CALL "CRBREG' USING S| MPLE- S| MPLECBIECT- | NTERFACE.
SET W5 CRBREG TO TRUE.

PERFCRM CHECK- STATUS.

Read in the ICR froma file which has been popul at ed
by the server program

CPEN | NPUT SI MPLE- SI MPLECBIECT- | CR
OCPY GKFI LE REPLACI NG
"X-1CR STAT" BY SI MPLE- S| MPLECBJECT- | CR- STAT.

DI SPLAY "Readi ng obj ect reference fromfile".
READ S| MPLE- SI MPLECBIECT- | OR
CCPY CHKFI LE REPLAQ NG

"X-1 OR- STAT" BY S| MPLE- S| MPLECBJECT- | CR- STAT.

MOVE S| MPLE- S| MPLECBIECT- REC TO W& SI MPLE- | CR

* | R Record read successfully

CLCSE SI MPLE- S| MPLEGBIECT- | CR
OCPY GKFI LE REPLACI NG

37

CHAPTER 2 |

Example 3: The SIMPLECL Demonstration Program (Sheet 3 of 3)

"X-1 CR- STAT" BY S| MPLE- S| MPLECBJECT- | CR- STAT.
* Set the CCBQL pointer to point to the ICR string
5 CALL " STRSET" USI NG | R REG- PTR
| OR REG LEN
W5 S| MPLE- | CR
SET W5 STRSET TO TRUE.
PERFORM CHECK- STATUS.

* (btain object reference fromthe IR
6 CALL "STRTOOBJ" USING | CR REG PTR
S| MPLE- S| MPLECBIECT- CBJ

SET W5 STRTQCBJ TO TRUE
PERFCRM CHECK- STATUS.

* Rel easi ng the nenory
CALL "STRFREE' USI NG | OR REC PTR
SET W& STRFREE TO TRUE.
PERFORM CHECK- STATUS.

SET SI MPLE- S| MPLECBJECT- CALL- ME TO TRUE
D SPLAY "invoking Sinple::" Sl MPLE-SI MPLECBIECT- CPERATI ON

7 CALL " CRBEXEC! USI NG SI MPLE- SI MPLECBIECT- CBJ
S| MPLE- S| MPLECBIECT- CPERATI CN
S| MPLE- S| MPLECBJECT- 70FE- ARGS
S| MPLE- USER- EXCEPTI ONS.
SET W& CRBEXEC TO TRIE
PERFCRM CHECK- STATUS.

CALL "CBIREL" USI NG SI MPLE- SI MPLECBJECT- CBJ.
SET W& CBJREL TO TRUE.
PERFCRM CHECK- STATUS.

Dl SPLAY “Sinpl e deno conpl ete. ™.

o

* Check Errors Copybook

khkkkhkhkkhkhkhkhkhkhkhhhkhkhkhhhhhkhkhhhhhhkhhhhhhkhhhhhhkhhkhhhhkhkhhhhhkhkhkkhhhhkhkhkkxx

CCPY GHKERRS.

38

Explanation of the SIMPLECL The SI MPLECL program can be explained as follows:

program 1. ORBSTAT is called to register the ORBI X- STATUS- | NFCRVATI ON block that
is contained in the CORBA copybook. Registering the
CRBI X- STATUS- | NFCRVATI ON block allows the COBOL runtime to
populate it with exception information, if necessary.

You can use the ORBI X- STATUS- | NFCRVATI N data item (in the CORBA
copybook) to check the status of any Orbix call. The EXCEPTI ON- NUVBER
numeric data item is important in this case. If this item is 0, it means
the call was successful. Otherwise, EXCEPTI ON- NUMBER holds the
system exception number that occurred. You should test this data item
after any Orbix call.

2. CRBARGS s called to initialize a connection to the ORB.

3. CRBREGIs called to register the IDL interface with the Orbix COBOL
runtime.

4. The client reads the stringified object reference for the object from the
PDS member that has been populated by the server. For the purposes
of this example, the IOR member is contained in
or bi xhl q. DEM3S. | CRS(SI MPLE) .

Bb. STRSET is called to create an unbounded string to which the stringified
object reference is copied.

6. STRTOCRI is called to create an object reference to the server object
that is represented by the IOR. This must be done to allow operation
invocations on the server. The STRTOOBJ call takes an interoperable
stringified object reference and produces an object reference pointer.
This pointer is used in all method invocations. See the CORBA
Programmeris Reference, C++ for more details about stringified
object references

7. After the object reference is created, CRBEXEC is called to invoke
operations on the server object represented by that object reference.
You must pass the object reference, the operation name, the argument
description packet, and the user exception buffer. The operation name
must have at least one trailing space. The generated operation
condition names found in the SI MPLE copybook already handle this.

39

CHAPTER 2 |

The same argument description is used by the server, and is found in
the SI MPLE copybook. For example, See
or bi xhl g. DEMDS. GCBCL. CCPYLI B(S| MPLE) .

Location of the SIMPLECL You can find a complete version of the SI MPLEQL client program in
program or bi xhl g. DEMCS. GOBCL. SRQ(S| MPLECL) .

40

Building the Client

Location of the JCL

Resulting load module

Sample JCL used to compile and link the client can be found in the third
step of or bi xhl . DEMOS. CCBQL. BU LD. JOL(S| MPLECB) .

When the JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMOS. OCBQL. LQAD(SI MPLEQL) .

41

CHAPTER 2 |

Running the Application

Introduction

Steps to run the application

42

This section describes the steps you must follow to run your application. It
also provides an example of the output produced by the client and server.

Note: This example involves running a COBOL client and COBOL server.
You could, however, choose to run a COBOL server and a C+ + client, or a
COBOL client and a C+ + server. Substitution of the appropriate JCL is all
that is required in the following steps to mix clients and servers in different
languages.

The steps to run the application are:

Step Action

1 | “Starting the Orbix E2A Locator Daemon” on page 43 (if it has
not already been started).

2 | “Starting the Orbix E2A Node Daemon” on page 44 (if it has
not already been started).

3 | “Running the Server and Client” on page 45.

Starting the Orbix E2A Locator Daemon

Overview

JCL to start the Orbix E2A locator
daemon

Locator daemon configuration

An Orbix E2A locator daemon must be running on the server’s location
domain before you try to run your application. The Orbix E2A locator
daemon is a program that implements several components of the ORB,
including the Implementation Repository. The locator runs in its own
address space on the server host, and provides services to the client and
server, both of which need to communicate with it.

When you start the Orbix E2A locator daemon, it appears as an active job
waiting for requests. See the CORBA Administratoris Guide for more details
about the locator daemon.

If the Orbix E2A locator daemon is not already running, you can use the JCL
in or bi xhl q. JOL(LOCATCR) to start it.

The Orbix E2A locator daemon uses the Orbix E2A configuration member for
its settings. The JCL that you use to start the locator daemon uses a sample
configuration member that is provided in or bi xhl g. DOVAI NS(FI LEDQWA) .

43

CHAPTER 2 |

Starting the Orbix E2A Node Daemon

Overview

JCL to start the Orbix E2A node
daemon

Node daemon configuration

44

An Orbix E2A node daemon must be running on the server’s location
domain before you try to run your application. The node daemon acts as the
control point for a single machine in the system. Every machine that will run
an application server must be running a node daemon. The node daemon
starts, monitors, and manages the application servers running on that
machine. The locator daemon relies on the node daemons to start processes
and inform it when new processes have become available.

When you start the Orbix E2A node daemon, it appears as an active job
waiting for requests. See the CORBA Administratoris Guide for more details
about the node daemon.

If the Orbix E2A node daemon is not already running, you can use the JCL in
or bi xhl q. JOL(NCDEDAEMN) to start it.

The Orbix E2A node daemon uses the Orbix E2A configuration member for
its settings. The JCL that you use to start the node daemon uses a
configuration member that is provided in or bi xhl g. DOVAI NS(FI LEDQWA) .

Running the Server and Client

Overview

JCL to run the server

IOR member for the server

JCL to run the client

This section describes how to run the SI MPLE demonstration.

To run the supplied SI MPLESV server application, use the following JCL:

or bi xhl q. DEM3S. GCBCL. JCL(SI MPLESV)

Note: You can use the 0S/390 STCP operator command to stop the
server.

When you run the server, it automatically writes its IOR to a PDS member
that is subsequently used by the client. For the purposes of this example,
the IOR member is contained in or bi xhl g. DEMOS. | CRS(S| MPLE) .

After you have started the server and made it available to the network, you
can use the following JCL to run the supplied SI MPLECL client application:

or bi xhl q. DEM3S. GCBCL. RUN JCL(SI MPLECL)

45

CHAPTER 2 |

Application Output

Server output The following is an example of the output produced by the server for the
SI MPLE demonstration:

Initializing the CRB

Regi stering the Interface

Qeating the oj ect

Witing object reference to file

dving control to the CRB to process Requests
Sinple::call_ne i nvoked

Note: All but the last line of the preceding server output is produced by
the SI MPLESV server mainline program. The final line is produced by the
SI MPLES server implementation program.

Client output The following is an example of the output produced by the SI MPLECL client:

Initializing the CRB

Regi stering the Interface

Readi ng obj ect reference fromfile
invoking Sinple::call_me

Sinpl e deno conpl et e.

Result If you receive the preceding client and server output, it means you have
successfully created an Orbix E2A COBOL client-server batch application.

46

Application Address Space Layout

Overview

Figure 3 is a graphical overview of the address space layout for an Orbix

E2A COBOL application running in batch in a native 0S/390 environment.

This is shown for the purposes of example and is not meant to reflect a
real-world scenario requiring the Orbix E2A Application Server Platform
Mainframe Edition.

0S/390 Environment

Server Process (including TCP/IP)

Locator Daemon Process (including TCP/IP)

ORB

Locator Daemon

COBOL Runtime

Server Mainline

Entry point for launch
includes calls to ORBSTAT, ORBARGS,
ORBSRVR, ORBREG, OBJNEW, OBJTOSTR,
and COARUN

Node Daemon Process (including TCP/IP)

Node Daemon

Server Implementation

DISPATCH - entry point for all IDL operations.

COAREQ is called to determine which COBOL
section (that is, IDL operations) to execute.

Each section includes COAGET (to move data

from COBOL runtime to Working Storage) and

COAPUT (to move data from Working Storage
to COBOL runtime).

Working Storage
used by COAGET
and COAPUT

Client Process (including TCP/IP)

ORB

COBOL Runtime

Client Implementation

ORBSTAT, ORBARGS, ORBREG, and
STRTOOB calls.

An ORBEXEC call for each IDL operation to be
invoked on the CORBA object.

Working Storage used by
ORBEXEC calls

Figure 3: Address Space Layout for an Orbix E2A COBOL Application

47

CHAPTER 2 |

Explanation of the batch server
process

Explanation of the daemon
processes

Explanation of the batch client
process

48

The server-side ORB, COBOL runtime, server mainline (launch entry point)
and server implementation (DI SPATCH entry point) are linked into a single
load module referred to as the "server". The COBOL runtime marshals data
to and from the server implementation working storage, which means there
is language-specific translation between C++ and COBOL.

The server runs within its own address space. Link the code as STATI C and
NCREENTRANT (that is, not re-entrant).

The server uses the TCP/IP protocol to communicate (through the
server-side ORB) with both the client and the locator daemon.

For an example and details of:

I The APIs called by the server mainline, see “Explanation of the batch
SIMPLESV program” on page 32 and “API Reference” on page 263.
T The APIs called by the server implementation, see “Explanation of the
batch SIMPLES program” on page 27 and “API Reference” on
page 263.

The locator daemon and node daemon each runs in its own address space.
See “Location Domains” on page 10 for more details of the locator and node
daemons.

The locator daemon and node daemon use the TCP/IP protocol to
communicate with each other. The locator daemon also uses the TCP/IP
protocol to communicate with the server through the server-side ORB.

The client-side ORB, COBOL runtime, and client implementation are linked
into a single load module referred to as the “client”. The client runs within
its own address space.

The client (through the client-side ORB) uses TCP/IP to communicate with
the server.

For an example and details of the APIs called by the client, see “Explanation
of the SIMPLECL program” on page 39 and “API Reference” on page 263.

In this chapter

CHAPTER 3

Getting Started in
IMS

This chapter introduces IMS application programming with
Orbix E2A, by showing how to use Orbix E2A to develop a
simple distributed application that features a COBOL client
running in batch and a COBOL server running in IMS.

This chapter discusses the following topics:

Overview and Setup Requirements page 50
Developing the Application Interfaces page 56
Developing the Server page 62
Developing and Running the Client page 76

Note: The example provided in this chapter requires use of the IMS
adapter, which is supplied as part of the Orbix E2A Application Server
Platform Mainframe Edition. See the IMS Adapter Administratoris Guide
for more details about the IMS adapter.

49

CHAPTER 3 |

Overview and Setup Requirements

Overview

Steps to create an application

The Simple demonstration

50

This section provides an overview of the main steps involved in creating an
Orbix E2A COBOL application. It describes important steps that you must
perform before you begin. It also introduces the supplied SI MPLE
demonstration, and outlines where you can find the various source code and
JCL elements for it.

The main steps to create an Orbix E2A COBOL application are:

Step Action

1 | “Developing the Application Interfaces” on page 56.

2 | “Developing the Server” on page 62.

3 | “Developing and Running the Client” on page 76.

This chapter describes in detail how to perform each of these steps.

This chapter describes how to develop a simple client-server application
that consists of:

T An Orbix E2A COBOL server that implements a simple persistent
POA-based server.

T An Orbix E2A COBOL client that uses the clearly defined object
interface, Si npl ehj ect, to communicate with the server.

The client and server use the Internet Inter-ORB Protocol (I1OP), which runs
over TCP/IP, to communicate. As already stated, the SI MPLE demonstration
is not meant to reflect a real-world scenario requiring the Orbix E2A
Application Server Platform Mainframe Edition, because the client and
server are written in the same language and running on the same platform.

The demonstration server

The demonstration client

Location of supplied code and JCL

The server runs in an IMS region. It accepts and processes requests from the
client across the network, and communicates with the client via the IMS
adapter.

See “Location of supplied code and JCL” on page 51 for details of where

you can find an example of the supplied server. See “Developing the Server”
on page 62 for more details of how to develop the server.

The client runs as a batch job. It accesses and requests data from the
server. When the client invokes a remote operation, a request message is
sent from the client to the server via the IMS adapter. When the operation
has completed, a reply message is sent back to the client via the IMS
adapter. This completes a single remote CORBA invocation.

See “Location of supplied code and JCL" on page 51 for details of where
you can find an example of the supplied client. See “Developing and
Running the Client” on page 76 for more details of how to develop the
client.

All the source code and JCL components needed to create and run the IMS
SI MPLE demonstration have been provided with your installation. Apart from
site-specific changes to some JCL, these do not require editing.

Table 5 provides a summary of the code elements and JCL components that
are relevant to the IMS SI MPLE demonstration (where or bi xhl g represents
your installation’s high-level qualifier).

Table 5: Supplied Code and JCL (Sheet 1 of 2)

Location

Description

or bi xhl q. DEM3S. | DL(S| MPLE)

This is the supplied IDL.

or bi xhl gq. DEMDS. | M5, COBOL. SR SI MPLESV) This is the source code for the IMS server mainline

program, which is generated when you run the JCL in
or bi xhl g. DEMSS. | M5. CCBCL. BU LD JOL('SI MPLI DL) .
(The IMS server mainline code is not shipped with
the product. You must run the sl MPLI DL JCL to
generate it.)

or bi xhl gq. DEMDS. | M5, COBCL. SRO(SI MPLES) This is the source code for the IMS server

implementation program.

51

CHAPTER 3 |

Table 5: Supplied Code and JCL (Sheet 2 of 2)

Location Description
or bi xhl q. DEMD5. GCBCL. SRQ(S| MPLECL) This is the source code for the batch client program.
or bi xhl g. DEMDS. | M5. GCBCL. BUI LD. JCL(SI MPLI DL) This JCL runs the Orbix E2A IDL compiler, to

generate COBOL source and copybooks for the IMS
server. This JCL specifies the - S and - TI M5 compiler
arguments, to generate IMS server mainline code. It
does not specify the -z argument, which generates
server implementation code.

This JCL also specifies the - nia and

-ttransacti on_name arguments, to generate the
adapter mapping file, which is then written to

or bi xhl gq. DEMDS. | M5. MFAVAP(SI MPLEA) . The contents
of the SI MPLEA member are

(Si npl e/ Si npl e(yj ect, cal | _me, SIMPLESV) (that is,
fully qualifed interface name followed by operation
name followed by IMS transaction name). See the
IMS Adapter Administratoris Guide for more details
about generating adapter mapping files.

or bi xhl g. DEMOS. GCBQL. BU LD. JOL(S| MPLECB) This JCL compiles the client program.

or bi xhl g. DEMOS. | M5, OOBCL. BU LD. JCL(S| MPLESB) This JCL compiles and links the IMS server mainline
and IMS server implementation programs.

or bi xhl g. DEMOS. | M5, OOBCL. BU LD. JCL(S| MPLREQ This JCL registers the IDL in the Interface Repository.

or bi xhl g. DEMOS. | MB. OCBCL. BU LD. JCL(S| MPLI CR) This JCL obtains the IOR that the client of the IMS

server requires to locate the IMS adapter.

or bi xhl g. DEMDS. GCBCL. RN JCL(SI MPLEQL) This JCL runs the batch client.

Note: Other code elements and JCL components are provided for the
batch and CICS versions of the SI MPLE demonstration. See “Getting
Started in Batch” on page 13 and “Getting Started in CICS” on page 83 for
more details of these.

52

Supplied copybooks

Table 6 provides a summary of the various copybooks supplied with your

product installation that are relevant to IMS. In Table 6, servers means IMS
servers, and clients means batch clients. Again, or bi xhl g represents your
installation’s high-level qualifier.

Table 6:

Supplied Copybooks (Sheet 1 of 3)

Location

Description

or bi xhl q.

| NCLUDE. OOPYLI B{ CHKERRS)

This is used by clients. It is not used by IMS servers.
It contains a COBOL function that can be called by
the client, to check if an exception has occurred, and
to report that exception.

or bi xhl q.

I NCLUDE. CCPYLI B(CERRSMFA)

This is used by servers. It contains a COBOL function
that can be called by the IMS server, to check if an
exception has occurred, and to report that exception.

or bi xhl g.

| NCLUDE. GOPYLI B(GORBA)

This is used both by clients and servers. It contains
various Orbix E2A COBOL definitions, such as
REQUEST- | NFOused by the coarReQfunction, and

CRBI X- STATUS- | NFCRVATI N which is used to register
and report exceptions raised by the COBOL runtime.

or bi xhl q.

I NCLUDE. CCPYLI B(CORBATYP)

This is used both by clients and servers. It contains
the COBOL typecode representation for IDL basic
types.

or bi xhl q.

I NCLUDE. GOPYLI B(| ORSLCT)

This is used by clients. It is not used by IMS servers.
It contains the COBOL SELECT statement entry for file
processing, for use with the OCPY..REPLAC NG
statement.

or bi xhl g.

| NCLUDE. GOPYLI B(| ORFD)

This is used by clients. It is not used by IMS servers.
It contains the COBOL FD statement entry for file
processing, for use with the QOPY. REPLAQ NG
statement.

or bi xhl g.

| NCLUDE. GOPYLI B(OHKFI LE)

This is used by clients. It is not used by IMS servers.
It is used for file handling error checking.

53

CHAPTER 3 |

Table 6:

Supplied Copybooks (Sheet 2 of 3)

Location

Description

or bi xhl g. | NCLUDE. GOPYLI B(PROCPARV)

This is used by clients. It is not used by IMS servers.
It contains the appropriate definitions for a COBOL
program to accept parameters from the JCL for use
with the ORBARGS API (that is, the ar gunent - string
parameter).

or bi xhl g. DEMCS. | M5. COBCL. CCPYLI B

This PDS is used to store all IMS copybooks that are
generated by the Orbix E2A IDL compiler when you
run the supplied SI MPLI DL JCL for the IMS
demonstration. It also contains copybooks with
Working Storage data definitions and Procedure
Division paragraphs for the nested sequences
demonstration.

or bi xhl g. DEM35. | M5. MFANVAP

This PDS is empty at installation time. It is used to
store the IMS adapter mapping member that is
generated by the Orbix E2A IDL compiler when you
run the supplied SI MPLI DL JCL.

or bi xhl g. | NCLUDE. CCPYLI B(LSI MSPCB)

This is specific to IMS and is used in IMS server
mainline programs. It contains the linkage section
definitions of the program communication blocks
(PCBs).

or bi xhl g. | NCLUDE. CCPYLI B(UPDTPCBS)

This is specific to IMS and is used in IMS server
mainline programs. It contains a paragraph that is
used to move the PCB data defined in the linkage
section (in the LSI MSPCB copybook) to the
corresponding working storage defined data (in the
V&l MBPCB copybook).

54

Table 6: Supplied Copybooks (Sheet 3 of 3)

Location Description

or bi xhl g. | NOLUDE. GCPYLI B(W8l MSPCB) This is specific to IMS and is used in IMS server
mainline and implementation programs. It contains
the working storage definitions of the PCB data. The
server mainline uses the paragraph defined in the
UPDTPCBS copybook, to populate the Wsl MSPCB
copybook with PCB data from the LSI MsPCB
copybook. This allows the server implementation to
access the PCB data, if required.

Note: This data is populated in the supplied
demonstrations, but it is not used.

Checking JCL components When creating the SI MPLE application, check that each step involved within
the separate JCL components completes with a condition code of zero. If the
condition codes are not zero, establish the point and cause of failure. The
most likely cause is the site-specific JCL changes required for the compilers.
Ensure that each high-level qualifier throughout the JCL reflects your
installation.

55

CHAPTER 3 |

Developing the Application Interfaces

Overview

Steps to develop application
interfaces

56

This section describes the steps you must follow to develop the IDL
interfaces for your application. It first describes how to define the IDL
interfaces for the objects in your system. It then describes how to generate
COBOL source and copybooks from IDL interfaces, and provides a
description of the members generated from the supplied Si npl eChj ect
interface.

The steps to develop the interfaces to your application are:

Step Action

1 | Define public IDL interfaces to the objects required in your
system.

See “Defining IDL Interfaces” on page 57.

2 | Use the Orbix E2A IDL compiler to generate COBOL source
code and copybooks from the defined IDL.

See “Generating COBOL Source and Copybooks” on page 58.

Defining IDL Interfaces

Defining the IDL

Explanation of the IDL

How the demonstration uses this
IDL

The first step in writing an Orbix E2A program is to define the IDL interfaces
for the objects required in your system. The following is an example of the
IDL for the Si npl eQbj ect interface that is supplied in

or bi xhl q. DEM3S. | DL(S| MPLE) :

/1 1DL
nmodul e Sinple
{
interface Sinpl e(ject
{
voi d
call _me();
ik

The preceding IDL declares a Si npl ehj ect interface that is scoped (that is,
contained) within the Si npl e module. This interface exposes a single

cal | _me() operation. This IDL definition provides a language-neutral
interface to the CORBA Si npl e: : Si npl e(hj ect type.

For the purposes of this example, the Si npl eCbj ect CORBA object is
implemented in COBOL in the supplied SI MPLES server application. The
server application creates a persistent server object of the Si npl evj ect
type, and publishes its object reference to a PDS member. The client
application must then locate the Si npl ehj ect object by reading the
interoperable object reference (IOR) from the relevant PDS member. The
client invokes the cal | _ne() operation on the Si npl e(hj ect object, and
then exits.

57

CHAPTER 3 |

Generating COBOL Source and Copybooks

The Orbix E2A IDL compiler You can use the Orbix E2A IDL compiler to generate COBOL source and
copybooks from IDL definitions.

Orbix E2A IDL compiler The Orbix E2A IDL compiler uses the Orbix E2A configuration member for
configuration its settings. The SI MPLI DL JCL that runs the compiler uses a configuration
member provided in or bi xhl g. CONFI G 1 DL) . See “Orbix E2A IDL Compiler”

58

Generated source code members Table 7 shows the server source code members that the Orbix E2A IDL
compiler generates, based on the defined IDL.

Table 7: Generated Server Source Code Members

Member

JCL Keyword
Parameter

Description

i dl menber naneS

I MPL

This is the IMS server
implementation source code
member. It contains stub
paragraphs for all the callable
operations.

This is only generated if you
specify both the -z and - TI M5

arguments with the IDL compiler.

i dl nenber naneSv

This is the IMS server mainline

source code member.

This is only generated if you
specify both the -Sand - TI M5

arguments with the IDL compiler.

Note: For the purposes of this example, the SI MPLES server
implementation is already provided in your product installation. Therefore,

the -z IDL compiler argument used to generate it is not specified in the

supplied SI MPLI DL JCL. The SI MPLESV server mainline is not already
provided, so the - S argument used to generate it is specified in the

supplied JCL. See “Orbix E2A IDL Compiler” on page 237 for more details
of the - S, -z, and - TI M5 arguments used to generate IMS server code.

59

CHAPTER 3 |

Generated COBOL copybooks Table 8 shows the COBOL copybooks that the Orbix E2A IDL compiler
generates, based on the defined IDL.

Table 8: Generated COBOL Copybooks

Copybook JCL Keyword Description
Parameter
i dl menber nane QCPYLI B This copybook contains data

definitions that are used for
working with operation
parameters and return values for
each interface defined in the IDL
member.

The name for this copybook does
not take a suffix.

i dl menber nameX QCPYLI B This copybook contains data
definitions that are used by the
COBOL runtime to support the
interfaces defined in the IDL
member.

This copybook is automatically
included in the i dl nenber nane
copybook.

i dl menber naneD CCPYLI B This copybook contains
procedural code for performing
the correct paragraph for the
requested operation.

This copybook is automatically
included in the i dl menber naneS
source code member.

How IDL maps to COBOL Each IDL interface maps to a group of COBOL data definitions. There is one

copybooks definition for each IDL operation. A definition contains each of the
parameters for the relevant IDL operation in their corresponding COBOL
representation. See “IDL-to-COBOL Mapping” on page 161 for details of
how IDL types map to COBOL.

60

Generated adapter mapping
member

Member name restrictions

Location of demonstration
copybooks and mapping member

Attributes map to two operations (get and set), and readonly attributes map
to a single get operation.

Table 9 shows the IMS adapter mapping member that the Orbix E2A IDL
compiler generates, based on the defined IDL.

Table 9: Generated IMS Adapter Mapping Member

Copybook JCL Keyword Description
Parameter
i dl nenber naneA MEMBER This is a simple text file that

determines what interfaces and
operations the IMS adapter
supports, and the IMS
transaction names to which it
should map each IDL operation.

Generated source code member, copybook, and mapping member names
are all based on the IDL member name. If the IDL member name exceeds
six characters, the Orbix E2A IDL compiler uses only the first six characters
of the IDL member name when generating the other member names. This
allows space for appending the two-character Sv suffix to the name for the
server mainline member, while allowing it to adhere to the eight-character
maximum size limit for 0S/390 member names. Consequently, all other
member names also use only the first six characters of the IDL member
name, followed by their individual suffixes, as appropriate.

You can find examples of the copybooks and IMS adapter mapping member
generated for the SI MPLE demonstration in the following locations:

I orbi xhl g. DEMDS. | M8, COBOL. OCPYLI B(S| MPLE)
or bi xhl q. DEMCS. | M5, OOBCL. COPYLI B(S| MPLEX)

-
T orbi xhl q. DEMDS. | M5, GOBCL. GOPYLI B(S| MPLED)
I orbixhl g. DEMOS. | MB. MFAVAP(S| MPLEA)

Note: These copybooks and mapping member are not shipped with your
product installation. They are generated when you run the supplied
SI MPLI DL JCL, to run the Orbix E2A IDL compiler.

61

CHAPTER 3 |

Developing the Server

Overview This section describes the steps you must follow to develop the IMS server
executable for your application.

Steps to develop the server The steps to develop the server application are:

Step Action

1 | “Writing the Server Implementation” on page 63.

“Writing the Server Mainline” on page 67.

2
3 | “Building the Server” on page 72.
4 | “Preparing the Server to Run in IMS” on page 73.

62

Writing the Server Implementation

The server implementation
program

Example of the IMS SIMPLES
program

You must implement the server interface by writing a COBOL program that
implements each operation in the i dl menber nane copybook. For the
purposes of this example, you must write a COBOL program that
implements each operation in the SI MPLE copybook. When you specify the
-Z and - TI M5 arguments with the Orbix E2A IDL compiler in this case, it
generates a skeleton program called SI MPLES, which is a useful starting
point.

The following is an example of the IMS SI MPLES program:

Example 4: The IMS SIMPLES Demonstration (Sheet 1 of 2)

Khkkkkkkhhhhhhkhhhhhhkhhhhhhhkhhhhhhkkhhhhkkkkhhhkkkhhhkhkkkhhhkkkkh k%

* |dentification Division

R R R R SRR SR SRS EEE RS EE RS EE R SRR RS RE R EEEEEEEEEEREEEES
| DENTI FI CATION DV S| ON
PROGRAM | D. SI MPLES.
ENVI RONVENT DIV SI ON

DATA D'VI SI O\

WIRKI NG STCRAGE SECTI ON

QCPY S| MPLE.

QCPY CORBA

QCPY Wl MBPCB.

01 V& | NTERFACE- NAVE Pl CTURE X(30).
01 V& | NTERFACE- NAVE- LENGTH Pl CTURE 9(09) Bl NARY
VALUE 30.

LR R R R R R R R R R EEEEEEEEEREEEEEEEEEEEEEEEEEEEEEES]

* Procedure D vision

Khkkhkkhkkkhhhhkkhhhhkkkhhhhhkhkkhhhkhkkkhhhkhkkhhhkkkkhhhhkkkhhhhkkkkkkk
PROCEDURE DI M SI ON

ENTRY "D SPATCH'.

CALL " COAREQ' USI NG REQUEST- | NFQ

SET W5 COAREQ TO TRUE.
PERFCRM CHECK- STATUS.

63

CHAPTER 3 |

Example 4: The IMS SIMPLES Demonstration (Sheet 2 of 2)

4 * Resolve the pointer reference to the interface nane which is
* the fully scoped interface nane
* Note make sure it can handl e the nax interface name | ength
CALL " STRCGET" US| NG | NTERFACE- NAME
W\B- | NTERFACE- NAME- LENGTH
V- | NTERFACE- NAME.
SET W& STREGET TO TRUE.
PERFORM CHECK- STATUS.

LR E R RS RS EEEEEE SRR EEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]

* Interface(s) evaluation:

R SRR R S S SRS RS SRR RS S SRR S E R RS SRR SRR R RS EEEEEEEEEEEEEEEE]

MOVE SPACES TO S| MPLE- SI MPLECBIECT- CPERATI ON

EVALUATE W& | NTERFACE- NAVE
WHEN ' | DL: Si npl e/ Si npl eChj ect: 1. 0

5 * Resolve the pointer reference to the operation information

CALL "STRCET" USI NG CPERATI ON- NAMVE

S| MPLE- S- 3497- CPERATI ON- LENGTH

SI MPLE- S| MPLECBJECT- CPERATI ON
SET W5 STRCGET TO TRUE
PERFCORM CHECK- STATUS
D SPLAY "Sinple::" S MPLE-SI MPLECBIECT- CPERATI ON

"i nvoked"

END- EVALUATE.

6 COCPY S| MPLED.
GCBAKK

7 DO S| MPLE- S| MPLECBJECT- CALL- ME
CALL " OCOAGET" USI NG SI MPLE- SI MPLECBJECT- 70FE- ARGS.
SET W&- CQACET TO TRUE
PERFCRM CHECK- STATUS.

CALL " QQoAPUT" USI NG SI MPLE- SI MPLECBJECT- 70FE- ARGS.
SET W& COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

o

* Check Errors Copybook

khkkkhkhkkhkhkhkhkhkhkhhhkhkhkhhhhhkhkhhhhhhkhhhhhhkhhhhhhkhhkhhhhkhkhhhhhkhkhkkhhhhkhkhkkxx

8 COCPY CERRSMFA

64

Explanation of the IMS SIMPLES
program

The SI MPLES program can be explained as follows:

1.
2.

The QoPY Wel MBPCB statement provides access to IMS PCBs.

The DI SPATCH logic is automatically coded for you, and the bulk of the
code is contained in the SI MPLED copybook. When an incoming request
arrives from the network, it is processed by the ORB and a call is made
to the DI SPATCH entry point.

QOOAREQIs called to provide information about the current invocation
request, which is held in the REQUEST- I NFOblock that is contained in
the GCRBA copybook.

QOOAREQis called once for each operation invocation—after a request
has been dispatched to the server, but before any calls are made to
access the parameter values.

STRGET is called to copy the characters in the unbounded string pointer
for the interface name to the string item representing the fully scoped
interface name.

STRGET is called again to copy the characters in the unbounded string
pointer for the operation name to the string item representing the
operation name.

The procedural code used to perform the correct paragraph for the
requested operation is copied into the program from the SI MPLED
copybook.

Each operation has skeleton code, with appropriate calls to CoaPUT and
QOACET to copy values to and from the COBOL structures for that
operation’s argument list. You must provide a correct implementation
for each operation. You must call GOAGET and GOAPUT, even if your
operation takes no parameters and returns no data. You can simply
pass in a dummy area as the parameter list.

The IMS server implementation uses a OOPY CERRSMFA statement
instead of COPY OKERRS.

Note: The supplied SI MPLES program is only a suggested way of
implementing an interface. It is not necessary to have all operations
implemented in the same COBOL program.

65

CHAPTER 3 |

Location of the IMS SIMPLES You can find a complete version of the IMS SI MPLES server implementation
program program in or bi xhl . DEMCS. | MB. GOBCL. SRO(S| MPLES) .

66

Writing the Server Mainline

The server mainline program

Example of the IMS SIMPLESV
program

The next step is to write the server mainline program in which to run the

server implementation. For the purposes of this example, when you specify
the - sand - TI Ms arguments with the Orbix E2A IDL compiler, it generates a
program called SI MPLESV, which contains the server mainline code.

Note: Unlike the batch server mainline, the IMS server mainline does not
have to create and store stringified object references (IORs) for the
interfaces that it implements, because this is handled by the IMS adapter.

The following is an example of the IMS SI MPLESV program:

Example 5: The IMS SIMPLESV Demonstration (Sheet 1 of 3)

| DENTI FI CATI ON DI VI SI O\
PROCRAM | D. S| MPLESV.
ENVI RONVENT D VI SI ON
DATA D'VI SI ON
WORKI NG STCRAGE SECTI O\
QGCPY SI MPLE

CCPY CCRBA
QCPY W& MBPCB.

01 ARG LI ST

01 ARG LI ST-LEN

01 CRB-NAME

01 CRB- NAME- LEN

01 SERVER- NAME

01 SERVER- NAME- LEN

Pl CTURE X(01)

VALUE SPACES.

Pl CTURE 9(09) Bl NARY
VALLE 0.

Pl CTURE X(10)

VALLE "si npl e_orb".
Pl CTURE 9(09) Bl NARY
VALUE 10.

PI CTURE X(07)

VALLE "sinple ".

PI CTURE 9(09) BI NARY
VALLE 6.

67

CHAPTER 3 |

Example 5: The IMS SIMPLESV Demonstration (Sheet 2 of 3)

01 | NTERFACE- LI ST.
03 FI LLER Pl CTURE X(28)
VALLUE "I DL: Sinpl e/ Sinpl eChject:1.0 .
01 | NTERFACE- NAMES- ARRAY REDEFI NES | NTERFACE- LI ST.
03 | NTERFACE- NAME COOURS 1 TI MES Pl CTURE X(28) .

01 GBJECT-ID- LI ST.
03 FI LLER Pl CTURE X(27)
VALLE "Si npl e/ Si npl eChj ect _obj ect "
01 GBJECT-| D- ARRAY REDEFI NES CBJECT- | D- LI ST.
03 OBJECT- | DENTI FI ER GQCOURS 1 Tl MES Pl CTURE X(27).

LR E R RS RS EEEEEE SRR EEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]

* (hj ect values for the Interface(s)
R SRR R S SRR RS SRR RS S SRS E SRR SR SRR SRR EEEEEREEEEEEEEEEEEEE]
01 SI MPLE- S| MPLECBIECT- CBJ PA NTER

VALUE NULL.

QCPY LS| M5PCB.
PROCEDURE DIVI SION USING LS- 1O PCB, LS ALT-PCB.

INT.
PERFCRM UPDATE- W5- PCBS.

1 CALL " CRBSTAT" USI NG CRBI X- STATUS- | NFCRIVATI ON
SET W5 CRBSTAT TO TRUE
PERFCRM CHECK- STATUS.

2 CALL " CRBARGS! USI NG ARG LI ST
ARG LI ST-LEN
CRB- NAME
CRB- NAME- LEN
SET W& CRBARGS TO TRUE
PERFCRM CHECK- STATUS.

3 CALL "CRBSRWR' USI NG SERVER- NAVE
SERVER- NAME- LEN
SET W5 CRBSRVR TO TRUE
PERFCRM CHECK- STATUS.

LR E RS E SRR EEEE RS SRR SRR EEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]

* Interface Section Bl ock

R R

68

Example 5: The IMS SIMPLESV Demonstration (Sheet 2 of 3)

01 | NTERFACE- LI ST.
03 FI LLER PI CTURE X(28)
VALUE "I DL: Sinpl e/ SinpleChject:1.0 “.
01 | NTERFACE- NAMES- ARRAY REDEFI NES | NTERFACE- LI ST.
03 | NTERFACE- NAME COOURS 1 Tl MES PI CTURE X(28).

01 CBJECT-ID- LI ST.
03 F LLER Pl CTURE X(27)
VALLE "Si npl e/ Si npl eChj ect _obj ect "
01 CBJECT- | D- ARRAY REDEFI NES CBJECT-| D- LI ST.
03 CBJECT- | DENTI FI ER OCOURS 1 Tl MES Pl CTURE X(27).

LR R R R R EEEEEEEEEEE RS EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEES]

* (bject values for the Interface(s)
RS SR RS SRR SRR E RS EE RS E SRR EEEEEEEEEEEEEEEEEEEEE]
01 SI MPLE- S| MPLECBIECT- CBJ PA NTER

VALUE NULL.

QCPY LS| MBPCB.
PROCEDURE D'VI SION USING LS-1 G- PCB, LS ALT-PCB.

INIT.
PERFCRM UPDATE- W5- PCBS.

CALL " CRBSTAT" USI NG CRBI X- STATUS- | NFCRIVATI O\
SET W5- CRBSTAT TO TRUE
PERFCRM CHECK- STATUS.

CALL " CRBARGS! USI NG ARG LI ST
ARG LI ST- LEN
CRB- NAME
CRB- NAMVE- LEN

SET W& CRBARGS TO TRIE

PERFCRM CHECK- STATUS.

CALL "CRBSRWR' USI NG SERVER- NAME
SERVER- NAME- LEN

SET W5- CRBSRVR TO TRUE

PERFCRM CHECK- STATUS.

LR RS E R R RS RS RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES]

* |Interface Section Bl ock

Khkkhkkhkkkhhhhkhkhkhhhhhkkkhhhhkhkhhhhhkhkhkhhhhhkhkkhhhkkkkhhhhkhkkhhhhkkkkhkk

69

CHAPTER 3 |

Example 5: The IMS SIMPLESV Demonstration (Sheet 3 of 3)

* Cenerating (bject Reference for interface Sinple/S npl eChj ect

4 CALL "ORBREG' USING S| MPLE- SI MPLECBIECT- | NTERFACE.
SET W& CRBREG TO TRUE.
PERFCRM CHECK- STATUS.

5 CALL "CBINEW US| NG SERVER NAME
| NTERFACE- NAME CF | NTERFACE- NAMES- ARRAY(1)
CBJECT- | DENTI FI ER OF GBJECT- | D- ARRAY(1)
S| MPLE- S| MPLECBJECT- CBJ.
SET V& CBINEW TO TRUE.
PERFCRV GHECK- STATUS.

6 CALL " COARUN'.
SET W& COARUN TO TRUE.
PERFCRM CHECK- STATUS.

EXI T- PRG
QCBACK.

khkkkkkhkhhkhkhkhkhkhhhkhkhkhhhhhkhkhhhhhhkhhhhhhkhhhhhhkhhhhhhkhkdhhhhkhkhdhrhkhkhkxx

* Popul ate the working storage PCB definitions

IR E RS SRR RS S SRR EE RS SRR RS E RS EE R EEEEEEEEEEEEEEEEEEEE R

GCPY UPDTPCBS.

khkkkkhkkhkkhkkkhkhkkhkhhkhkhkhkhhhhkhkhkhhhhkhkhkhhhhhkhkhhhhhkhhhhhhkhkhhhhhkhkhdhhhkhkhkxxx

* Check Errors Copybook

IR E RS SRR RS SRR RS E RS EE R EEE RS EEREEEEEEEEEEEEEEEEEEEEEEE]

CCPY CERRSMFA

Explanation ofthe IMSSIMPLESV ~ The SI MPLESV program can be explained as follows:

program 1. ORBSTAT is called to register the ORBI X- STATUS- | NFCRVATI ON block that
is contained in the OCRBA copybook. Registering the
CRBI X- STATUS- | NFCRVATI ON block allows the COBOL runtime to
populate it with exception information, if necessary.
2. ORBARGS s called to initialize a connection to the ORB.

3. CRBSRWIs called to set the server name.

70

Location of the IMS SIMPLESV
program

4. CORBREGIS called to register the IDL interface, Si npl eChj ect, with the
Orbix COBOL runtime.

5. OBINEWIs called to create a persistent server object of the
Si npl ehj ect type, with an object ID of ny_si npl e_obj ect .

6. QOARWis called, to enter the CRB: : run loop, to allow the ORB to
receive and process client requests. This then processes the CORBA
request that the IMS adapter sends to IMS. If the transaction has been
defined as WFI, multiple requests can be processed in the GOARUN loop;
otherwise, COARUN processes only one request.

You can find a complete version of the IMS SI MPLESV server mainline
program in or bi xhl g. DEMDS. | M5, GCBCL. SRQ(S| MPLESV) after you have run
the supplied Sl MPLI DL JCL to run the Orbix E2A IDL compiler.

71

CHAPTER 3 |

Building the Server

Location of the JCL Sample JCL used to compile and link the IMS server mainline and server
implementation is in or bi xhl g. DEMCS. | M5. COBQL. BU LD. JO(SI MPLESB) .

Resulting load module When this JCL has successfully executed, it results in a load module that is
contained in or bi xhl . DEMDS. | M5. CCBCL. LOAIX S| MPLESV) .

72

Preparing the Server to Run in IMS

Overview

Steps

Step 1ADefining transaction
definition for IMS

Step 2AProviding load module to
IMS region

This section describes the required steps to allow the server to run in an IMS
MPP region. When all the steps in this section have been completed, the
server is started automatically within IMS, as required.

The following steps are required to enable an IMS server to run in an IMS
MPP region:

Step Action

1 | Define a transaction definition for IMS.

Provide the IMS server load module to an IMS MPP region.

Generate mapping file entries for the IMS adapter.

Add the IDL to the Interface Repository.

2
3
4
5

Obtain the IOR for use by the client program.

A transaction definition must be created for the server, to allow it to run in
IMS. The following is the transaction definition for the supplied
demonstration:

APPLCTN GPSB=S| MPLESV, X
PGVIYPE=(TP, , 2) , X
SOHDTYP=PARAL LEL

TRANSACT ~ OCDE=S| MPLESV, X
ED T=(ULO)

Ensure that the or bi xhl g. DEMDS. | M5. 0OBQL. LQAD PDS is added to the
STEPLI B for the IMS region that is to run the transaction, or copy the
SI MPLESV load module to a PDS in the STEPLIB of the relevant IMS region.

73

CHAPTER 3 |

Step 3AGenerating mapping file
entries

Step 4AAdding IDL to interface
repository

74

The IMS adapter requires mapping file entries, so that it knows which IMS
transaction should be run for a particular interface and operation. The
mapping file entry for the supplied example is contained in

or bi xhl . DEMCS. | M5. MFAMAP(SI MPLEA) (after you run the IDL compiler) and
appears as follows:

(Sinpl e/ Si npl eMyj ect, cal | _ne, S| MPLESV)

Adapter mapping file generation is performed as part of the supplied

or bi xhl q. DEMDS. | M5. OCBCL. BU LD JOL(SI MPLI DL) JCL. The -nfa:
-ttransacti on_name argument with the IDL compiler generates the
mapping file. For the purposes of this example, transacti on_nane is
replaced with SI MPLESV. An | DLMFA DD statement must also be provided in
the JCL, to specify the PDS into which the mapping file is generated. See
the IMS Adapter Administratoris Guide for full details about adapter
mapping files.

The IMS adapter needs to be able to obtain the IDL for the COBOL server
from the Interface Repository, so that it knows what data types it has to
marshal into IMS for the server, and what data types it should expect back
from the IMS transaction. Ensure that the relevant IDL for the server has
been added to the Interface Repository before the IMS adapter is started.

To add IDL to the Interface Repository, the Interface Repository must be
running. You can use the JCL in or bi xhl g. JOL(I FR) to start it. The Interface
Repository uses the Orbix E2A configuration member for its settings. The
JCL that you use to start the Interface Repository uses a configuration
member that is provided in or bi xhl g. DOVAI NS(FI LEDOW) .

The following JCL that adds IDL to the Interface Repository is supplied in
or bi xhl q. DEM3S. | M5, COBQL. BU LD. JOL(S| MPLEREG) .

/1 JOLLI B ORDER=(H.Q ASP50. PROCS)

/1 I NCLUDE MEMBER=(CRXVARS)

//1DLCBL EXEC CRXI DL,

/1 SOURCE=S! MPLE,

/1 | DL=8CRBI X. . DEMS. | DL,

/1 QCOPYLI B=&CRBI X. . DEMCS. | M5. GOBCL. GCPYLI B,
/1 | MPL=&CRBI X. . DEMDS, | M5. OCBCL. SRG,

/1 | DLPARME - R

Step 5A0btaining the adapter
IOR

The final step is to use the resol ve command, to obtain the IOR that the
client needs to locate the IMS adapter. To obtain the IMS adapter's IOR, the
following prerequisites apply:

I The Interface Repository must be running and contain the relevant IDL.
See “Step 4—Adding IDL to interface repository” on page 74 for details
of how to start it, if it is not already running.

I The IMS adapter must be running. See the IMS Adapter
Administratoris Guide for more details about it and how to start it.

I The IMS adapter mapping file must contain the relevant mapping
entries. For the purposes of this example, ensure that the
or bi xhl g. DEMDS. | M5. MFAMAP(S| MPLEA) mapping member is being
used. See the IMS Adapter Administratoris Guide for details about
adapter mapping files.

The following JCL, which includes the resol ve command to obtain the IOR,
is supplied in or bi xhl g. DEMDS. | M5, GCBCL. BU LD. JOL(SI MPLI OR) .

/1 JCLLI B ORDER=(H.Q ASP50. PROCS)
/1 | NCLUDE MEMBER=(CRXVARS)
/| REG EXEC PROC=CRXADM N,

/1 PPARME nfa resolve Sinple/S npleChject > DD IR
/11 CR DD DSN=&CRBI X. . DEMDS. | ORS(SI MPLE) , DI SP=SHR

75

CHAPTER 3 |

Developing and Running the Client

Overview This section describes the steps you must follow to develop, and
subsequently run, the client executable for your application.

Note: The Orbix E2A IDL compiler does not generate COBOL client stub

code.
Steps to develop the client The steps to develop and run the client application are:
Step Action

1 | “Writing the Client” on page 77.

2 | “Building and Running the Client” on page 82.

76

77

CHAPTER 3 |

Example 6: The SIMPLECL Demonstration Program (Sheet 2 of 3)

01 CRB- NAME Pl CTURE X(10)
VALLE "sinpl e_orb".
01 ORB- NAME- LEN PI CTURE 9(09) BI NARY
VALLE 10.
01 | R REG PTR PA NTER
VALUE NULL.
01 | CR REG LEN Pl CTURE 9(09) BI NARY
VALUE 2048.

QCCPY PROCPARM
1 CALL "CORBSTAT" USI NG CRBI X- STATUS- | NFCRVATI O\

* ORBinitialization
DI SPLAY “Initializing the CRB".
2 CALL " CRBARGS' USI NG ARG LI ST

ARG LI ST- LEN
ORB- NAME
CRB- NAMVE- LEN

SET W& CRBARGS TO TRUE

PERFORM CHECK- STATUS.

* Register interface TypeTest
DI SPLAY "Regi stering the Interface".
3 CALL "CRBREG' USING S| MPLE- SI MPLECBIECT- | NTERFACE.
SET W& CRBREG TO TRUE.
PERFCRV CHECK- STATUS.

4 ** Read inthe ICRfroma file which has been popul at ed
** by the server program

CPEN | NPUT SI MPLE- S| MPLECBIECT- | CR
CCPY GKFl LE REPLAC NG
"X-1 OR- STAT" BY SI MPLE- SI MPLECBJECT- | CR- STAT.

Dl SPLAY "Readi ng obj ect reference fromfile".
READ S| MPLE- SI MPLECBIECT- | OR
CCPY CGHKFI LE REPLAG NG

"X-1 CR- STAT" BY S| MPLE- S| MPLECBIECT- | CR- STAT.

MOVE SI MPLE- S| MPLEGBIECT- REC TO W5- S| MPLE- | CR
* | CR Record read successfully

CLCSE SI MPLE- S| MPLEGCBIJECT- 1 R
CCPY CGKFl LE REPLAC NG

78

Example 6: The SIMPLECL Demonstration Program (Sheet 3 of 3)

"X-1 OR- STAT" BY S| MPLE- S| MPLECBJECT- | CR- STAT.
* Set the OCBOL pointer to point to the ICR string
CALL " STRSET" USI NG | CR REG- PTR
| OR REG LEN
W5- S| MPLE- | CR
SET W& STRSET TO TRUE.
PERFORM CHECK- STATUS.

* (Cbtain object reference fromthe IR
CALL "STRTCCBJ" USING | CR REG PTR
S| MPLE- S| MPLECBJECT- CBJ

SET W5- STRTOCBJ TO TRUE.
PERFCRM CHECK- STATUS.

* Rel easi ng the nenory
CALL "STRFREE' USING | CR- REG PTR
SET W& STRFREE TO TRUE
PERFCRM CHECK- STATUS.

SET SI MPLE- S| MPLECBJECT- CALL- ME TO TRUE
Dl SPLAY "invoking Sinple::" Sl MPLE-SI MPLECBIECT- CPERATI CN

CALL " CRBEXEC! USI NG SI MPLE- SI MPLECBIECT- CBJ
S| MPLE- SI MPLECBIECT- CPERATI CN
S| MPLE- S| MPLECBIECT- 70FE- ARGS
S| MPLE- USER- EXCEPTI ONS.

SET W& CRBEXEC TO TRIE

PERFCRM CHECK- STATUS.

CALL "CGBJREL" USING SI MPLE- S| MPLECBJECT- CBJ.
SET W& CBJREL TO TRUE.
PERFCRM CHECK- STATUS.

DI SPLAY “Sinpl e deno conpl ete. .

khkkhkkhhkkhhhhhkhkhhhhhkkhkhhhhkhkhkhhhhhkhkhkhhhhkhkhkhhhhhkhkhkhhhhhkhkhkhhhhkkkkhkk

* Check Errors Copybook

LR R R R R R RS EEE R EEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES]

OCPY GHKERRS.

79

CHAPTER 3 |

Explanation of the SIMPLECL The SI MPLECL program can be explained as follows:

program 1. ORBSTAT is called to register the ORBI X- STATUS- | NFCRVATI ON block that
is contained in the OCRBA copybook. Registering the
CRBI X- STATUS- | NFCRVATI ON block allows the COBOL runtime to
populate it with exception information, if necessary.

You can use the ORBI X- STATUS- | NFCRVATI ON data item (in the CORBA
copybook) to check the status of any Orbix call. The EXCEPTI ON- NUMBER
numeric data item is important in this case. If this item is 0, it means
the call was successful. Otherwise, EXCEPTI ON- NUMBER holds the
system exception number that occurred. You should test this data item
after any Orbix call.

2. CRBARGS s called to initialize a connection to the ORB.

3. CORBREGIs called to register the IDL interface with the Orbix COBOL
runtime.

4. The client reads the stringified object reference for the object from the
PDS member that has been populated by the server. For the purposes
of this example, the IOR member is contained in
or bi xhl g. DEM3S. | ORS(S| MPLE) .

B. STRSET is called to create an unbounded string to which the stringified
object reference is copied.

6. STRTOOBI is called to create an object reference to the server object
that is represented by the IOR. This must be done to allow operation
invocations on the server. The STRTOOBJ call takes an interoperable
stringified object reference and produces an object reference pointer.
This pointer is used in all method invocations. See the CORBA
Programmeris Reference, C++ for more details about stringified
object references

7. After the object reference is created, CRBEXEC is called to invoke
operations on the server object represented by that object reference.
You must pass the object reference, the operation name, the argument
description packet, and the user exception buffer. The operation name
must have at least one trailing space. The generated operation
condition names found in the SI MPLE copybook already handle this.

80

Location of the SIMPLECL
program

The same argument description is used by the server, and is found in
the SI MPLE copybook. For example, see
or bi xhl g. DEMCS, GCBCL. GCPYLI B(S| MPLE) .

You can find a complete version of the SI MPLEQL client program in
or bi xhl q. DEMOS. CCBOL. SRO(SI MPLEQL) .

81

CHAPTER 3 |

Building and Running the Client

JCL to build the client Sample JCL used to compile and link the client can be found in the third
step of or bi xhl q. DEMDS. OOBQL. BUI LD. JOL(SI MPLECB) .

Resulting load module When the JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMOS. OOBQL. LQAD(SI MPLEQL) .

JCL to run the client Provided the IMS adapter has been started, you can use the following JCL to
run the supplied SI MPLECL client application:

or bi xhl g. DEMCS. COBCL. RN JCL(SI MPLEQL)

Note: See the IMS Adapter Administratoris Guide for details of how to
start the IMS adapter.

Client output The following is an example of the output produced by the batch client for
the supplied demonstration:

Initializing the CRB

Regi stering the Interface

Readi ng obj ect reference fromfile
invoking Sinple::call_ne

Sinpl e deno conpl et e.

82

In this chapter

CHAPTER 4

Getting Started in
CICS

This chapter introduces CICS application programming with
Orbix E2A, by showing how to use Orbix E2A to develop a
simple distributed application that features a COBOL client
running in batch and a COBOL server running in CICS.

This chapter discusses the following topics:

Overview and Setup Requirements page 84
Developing the Application Interfaces page 89
Developing the Server page 95
Developing and Running the Client page 109

Note: The example provided in this chapter requires use of the CICS
adapter, which is supplied as part of the Orbix E2A Application Server
Platform Mainframe Edition. See the CICS Adapter Administratoris Guide
for more details about the CICS adapter.

83

CHAPTER 4 |

Overview and Setup Requirements

Introduction

Steps to create an application

The Simple demonstration

84

This section provides an overview of the main steps involved in creating an
Orbix E2A COBOL application. It describes important steps that you must
perform before you begin. It also introduces the supplied SI MPLE
demonstration, and outlines where you can find the various source code and
JCL elements for it.

The main steps to create an Orbix E2A COBOL application are:

Step Action

1 | “Developing the Application Interfaces” on page 89.

2 | “Developing the Server” on page 95.

3 | “Developing and Running the Client” on page 109.

This chapter describes in detail how to perform each of these steps.

This chapter describes how to develop a simple client-server application

that consists of:

T An Orbix E2A COBOL server that implements a simple persistent
POA-based server.

T An Orbix E2A COBOL client that uses the clearly defined object
interface, Si npl ehj ect, to communicate with the server.

The client and server use the Internet Inter-ORB Protocol (I1OP), which runs
over TCP/IP, to communicate. As already stated, the SI MPLE demonstration
is not meant to reflect a real-world scenario requiring the Orbix E2A
Application Server Platform Mainframe Edition, because the client and
server are written in the same language and running on the same platform.

The demonstration server

The demonstration client

Location of supplied code and JCL

The server runs in a CICS region. It accepts and processes requests from the
client across the network, and communicates with the client via the CICS
adapter.

See “Location of supplied code and JCL" on page 85 for details of where

you can find an example of the supplied server. See “Developing the Server”
on page 95 for more details of how to develop the server.

The client runs as a batch job. It accesses and requests data from the
server. When the client invokes a remote operation, a request message is
sent from the client to the server via the CICS adapter. When the operation
has completed, a reply message is sent back to the client via the CICS
adapter. This completes a single remote CORBA invocation.

See “Location of supplied code and JCL" on page 85 for details of where
you can find an example of the supplied client. See “Developing and
Running the Client” on page 109 for more details of how to develop the
client.

All the source code and JCL components needed to create and run the CICS
SI MPLE demonstration have been provided with your installation. Apart from
site-specific changes to some JCL, these do not require editing.

Table 10 provides a summary of the code elements and JCL components
that are relevant to the CICS SI MPLE demonstration (where or bi xhl g
represents your installation’s high-level qualifier).

Table 10: Supplied Code and JCL (Sheet 1 of 2)

Location

Description

or bi xhl q. DEM3S. | DL(S| MPLE)

This is the supplied IDL.

or bi xhl gq. DEMDS. O CS. QOBCL. SRO(SI MPLESV) This is the source code for the CICS server mainline

program, which is generated when you run the JCL in
or bi xhl g. DEM3S. O CS. OCBCL. BU LD, JOL(SI MPLI DL) .
(The CICS server mainline code is not shipped with
the product. You must run the sl MPLI DL JCL to
generate it.)

or bi xhl gq. DEMDS. O CS. OOBCL. SRO(SI MPLES) This is the source code for the CICS server

implementation program.

85

CHAPTER 4 |

Table 10: Supplied Code and JCL (Sheet 2 of 2)

Location

Description

or bi xhl q. DEM3S. GCBCL. SRQ(SI MPLECL)

This is the source code for the batch client program.

or bi xhl q. DEM5. A CS. GCBCL. BUI LD. JCL('SI MPLI DL)

This JCL runs the Orbix E2A IDL compiler, to
generate COBOL source and copybooks for the CICS
server. This JCL specifies the - Sand - T CS compiler
arguments, to generate CICS server mainline code. It
does not specify the -z argument, which generates
server implementation code.

This JCL also specifies the - nia and
-ttran_or_program name arguments, to generate the
adapter mapping file, which is then written to

or bi xhl g. DEMDS. €I CS. MFAMAP(S| MPLEA) . The
contents of the SI MPLEA member are

(Si npl e/ Si npl e(yj ect, cal | _me, SIMPLESV) (that is,
fully qualifed interface name followed by operation
name followed by CICS APPC transaction name or
CICS EXCI program name). See the CICS Adapter
Administratoris Guide for more details about
generating adapter mapping files.

or bi xhl gq. DEM3S. CCBQL. BU LD. JO(S| MPLECB)

This JCL compiles the client program.

or bi xhl g. DEMCS, O CS. OOBCL. BU LD, JOL(S| MPLESB)

This JCL compiles and links the CICS server mainline
and CICS server implementation programs.

or bi xhl g. DEM3S. A CS. COBCL. BU LD. JCL(S| MPLREG

This JCL registers the IDL in the Interface Repository.

or bi xhl . DEMCS. O CS. CCBQL. BU LD, JOL(S| MPLI OR)

This JCL obtains the IOR that the client of the CICS
server requires to locate the CICS adapter.

or bi xhl q. DEMOS. GOBCL. RUN. JCL(S| MPLECL)

This JCL runs the batch client.

Note: Other code elements and JCL components are provided for the
batch and IMS versions of the SI MPLE demonstration. See “Getting Started
in Batch” on page 13 and “Getting Started in IMS” on page 49 for more

details of these.

86

Supplied copybooks

Table 11 provides a summary of the various copybooks supplied with your

product installation that are relevant to CICS. In Table 11, servers means
CICS servers, and clients means batch clients. Again, or bi xhl g represents
your installation’s high-level qualifier.

Table 11: Supplied Copybooks (Sheet 1 of 2)

Location

Description

or bi xhl q.

| NCLUDE. OOPYLI B{ CHKERRS)

This is used by clients. It is not used by CICS servers.
It contains a COBOL function that can be called by
the batch client, to check if an exception has
occurred and report it.

or bi xhl q.

I NCLUDE. CCPYLI B(CERRSMFA)

This is used by servers. It contains a COBOL function
that can be called by the CICS server, to check if an
exception has occurred and report it.

or bi xhl g.

| NCLUDE. GOPYLI B(GORBA)

This is used both by clients and servers. It contains
various Orbix E2A COBOL definitions, such as
REQUEST- | NFOused by the coarReQfunction, and

CRBI X- STATUS- | NFCRVATI N which is used to register
and report exceptions raised by the COBOL runtime.

or bi xhl q.

I NCLUDE. CCPYLI B(CORBATYP)

This is used both by clients and servers. It contains
the COBOL typecode representation for IDL basic

types.

or bi xhl q.

I NCLUDE. GOPYLI B(| ORSLCT)

This is used by clients. It is not used by CICS servers.
It contains the COBOL SELECT statement entry for file
processing, for use with the OCPY..REPLAC NG
statement.

or bi xhl g.

| NCLUDE. GOPYLI B(| ORFD)

This is used by clients. It is not used by CICS servers.
It contains the COBOL FD statement entry for file
processing, for use with the QOPY. REPLAQ NG
statement.

or bi xhl q.

I NCLUDE. GCPYLI B(GHKFI LE)

This is used by clients. It is not used by CICS servers.
It is used for file handling error checking.

87

CHAPTER 4 |

Table 11: Supplied Copybooks (Sheet 2 of 2)

Location Description

or bi xhl g. | NCLUDE. CCPYLI B(PROCPARV) This is used by clients. It is not used by CICS servers.
It contains the appropriate definitions for a COBOL
program to accept parameters from the JCL for use
with the ORBARGS API (that is, the ar gunent - string
parameter).

or bi xhl g. DEMOS. O CS. Q0BQL. CCPYLI B This PDS is used to store all CICS copybooks that are
generated by the Orbix E2A IDL compiler when you
run the supplied Sl MPLI DL JCL for the CICS
demonstration. It also contains copybooks with
Working Storage data definitions and Procedure
Division paragraphs for use with the nested
sequences demonstration.

or bi xhl g. DEMDS. A CS. MFAVAP This PDS is empty at installation time. It is used to
store the CICS adapter mapping member generated
by the Orbix E2A IDL compiler when you run the
supplied SI MPLI DL JCL.

Note: Some other copybooks are provided specifically for use with IMS.
See “Getting Started in IMS” on page 49 for more details of these.

Checking JCL components When creating the SI MPLE application, check that each step involved within
the separate JCL components completes with a condition code of zero. If the
condition codes are not zero, establish the point and cause of failure. The
most likely cause is the site-specific JCL changes required for the compilers.
Ensure that each high-level qualifier throughout the JCL reflects your
installation.

88

Developing the Application Interfaces

Overview

Steps to develop application
interfaces

This section describes the steps you must follow to develop the IDL
interfaces for your application. It first describes how to define the IDL

interfaces for the objects in your system. It then describes how to generate

COBOL source and copybooks from IDL interfaces, and provides a
description of the members generated from the supplied Si npl eChj ect
interface.

The steps to develop the interfaces to your application are:

Step Action

1 | Define public IDL interfaces to the objects required in your
system.

See “Defining IDL Interfaces” on page 90.

2 | Use the Orbix E2A IDL compiler to generate COBOL source
code and copybooks from the defined IDL.

See “Generating COBOL Source and Copybooks” on page 91.

89

CHAPTER 4 |

Defining IDL Interfaces

Defining the IDL

Explanation of the IDL

How the demonstration uses this
IDL

90

The first step in writing an Orbix E2A program is to define the IDL interfaces
for the objects required in your system. The following is an example of the
IDL for the Si npl ebj ect interface that is supplied in

or bi xhl q. DEM3B. | DL(S| MPLE) :

/] 1DC
nmodul e Sinpl e
{ interface SinpleCj ect
{
voi d
call _me();
e

The preceding IDL declares a Si npl ehj ect interface that is scoped (that is,
contained) within the Si npl e module. This interface exposes a single

cal | _me() operation. This IDL definition provides a language-neutral
interface to the CORBA Si npl e: : Si npl e(hj ect type.

For the purposes of this example, the Si npl etbj ect CORBA object is
implemented in COBOL in the supplied SI MPLES server application. The
server application creates a persistent server object of the Si npl e(oj ect
type, and publishes its object reference to a PDS member. The client
application must then locate the Si npl e(oj ect object by reading the
interoperable object reference (IOR) from the relevant PDS member. The
client invokes the cal | _ne() operation on the Si npl e(oj ect object, and
then exits.

Generating COBOL Source and Copybooks

The Orbix E2A IDL compiler You can use the Orbix E2A IDL compiler to generate COBOL source and
copybooks from IDL definitions.

Orbix E2A IDL compiler The Orbix E2A IDL compiler uses the Orbix E2A configuration member for

configuration its settings. The SI MPLI DL JCL that runs the compiler uses a configuration
member provided in or bi xhl g. CONFI (1 DL) . See “Orbix E2A IDL Compiler”
on page 237 for more details.

Running the Orbix E2A IDL The COBOL source for the CICS server demonstration described in this
compiler chapter is generated in the first step of the following job:

or bi xhl g. DEMOS. A CS. GCBAL. BU LD. JA(SI MPLI DL)

91

CHAPTER 4 |

Generated source code members Table 12 shows the server source code members that the Orbix E2A IDL
compiler generates, based on the defined IDL.

Table 12: Generated Server Source Code Members

Member JCL Keyword Description
Parameter
i dl menber nameS | MPL This is the CICS server

implementation source code
member. It contains stub
paragraphs for all the callable
operations.

This is only generated if you
specify both the -z and -Ta Cs
arguments with the IDL compiler.

i dl menber nanmeSV | | MPL This is the CICS server mainline
source code member.

This is only generated if you
specify both the -Sand - T CS
arguments with the IDL compiler.

Note: For the purposes of this example, the SI MPLES server
implementation is already provided in your product installation. Therefore,
the -z IDL compiler argument used to generate it is not specified in the
supplied SI MPLI DL JCL. The SI MPLESV server mainline is not already
provided, so the - S argument used to generate it is specified in the
supplied JCL. See “Orbix E2A IDL Compiler” on page 237 for more details
of the - S, -z, and - TO CS arguments used to generate CICS server code.

92

Generated COBOL copybooks

How IDL maps to COBOL
copybooks

Table 13 shows the COBOL copybooks that the Orbix E2A IDL compiler
generates, based on the defined IDL.

Table 13: Generated COBOL Copybooks

Copybook JCL Keyword Description
Parameter
i dl menber name QCPYLI B This copybook contains data

definitions that are used for
working with operation
parameters and return values for
each interface defined in the IDL
member.

The name for this copybook does
not take a suffix.

i dl nenber naneX QCPYLI B This copybook contains data
definitions that are used by the
COBOL runtime to support the
interfaces defined in the IDL
member.

This copybook is automatically
included in the i dI nenber nane
copybook.

i dl menber naneD QOPYLI B This copybook contains
procedural code for performing
the correct paragraph for the
requested operation.

This copybook is automatically
included in the i dI nenber naneS
source code member.

Each IDL interface maps to a group of COBOL data definitions. There is one
definition for each IDL operation. A definition contains each of the
parameters for the relevant IDL operation in their corresponding COBOL
representation. See “IDL-to-COBOL Mapping” on page 161 for details of
how IDL types map to COBOL.

93

CHAPTER 4 |

Attributes map to two operations (get and set), and readonly attributes map
to a single get operation.

Generated adapter mapping
member

94

Developing the Server

Overview This section describes the steps you must follow to develop the CICS server
executable for your application.

Steps to develop the server The steps to develop the server application are:
Step Action
1 | “Writing the Server Implementation” on page 96.

“Writing the Server Mainline” on page 100.

“Building the Server” on page 104.

2
3
4

“Preparing the Server to Run in CICS” on page 105.

95

CHAPTER 4 |

Writing the Server Implementation

The server implementation
program

Example of the CICS SIMPLES
program

96

You must implement the server interface by writing a COBOL program that
implements each operation in the i dl menber name copybook. For the
purposes of this example, you must write a COBOL program that
implements each operation in the SI MPLE copybook. When you specify the
-Z and - TA Cs arguments with the Orbix E2A IDL compiler in this case, it
generates a skeleton program called SI MPLES, which is a useful starting
point.

The following is an example of the CICS S| MPLES program:

Example 7: The CICS SIMPLES Demonstration (Sheet 1 of 2)

khkkkkkhhhhhkkhhhhhkhhhhhhhhkhhhhhhkkhhhhhhkkhhhhhhkkhhhhhkkkkhhkkkkkh k%

* |dentification D vision

R R R RS SRS SRS SRS SRS R R SR SRR RS RS E SRR EEEEEEEEEEREEEEEEEEEE]
| DENTI FI CATION D'V SI ON

PROGRAM | D. S| MPLES.

ENVI RONMVENT D'V SI ON
DATA D'V SI ON
WRKI NG STCRAGE SECTI ON

QOPY S| MPLE.

OOPY CCRBA

01 W& | NTERFACE- NAVE Pl CTURE X(30).

01 W& | NTERFACE- NAVE- LENGTH Pl CTURE 9(09) Bl NARY

VALUE 30.

B R R

* Procedure D vision

o

PROCEDURE DI VI SI O\

ENTRY " DI SPATCH'.

CALL "OOPREQ' US| NG REQUEST- | NFQ
SET V& COAREQ TO TRUE.
PERFORM CHECK- STATUS,

Example 7: The CICS SIMPLES Demonstration (Sheet 2 of 2)

3 * Resolve the pointer reference to the interface nane which is
* the fully scoped interface nane
* Note nake sure it can handl e the nax interface nane | ength
CALL " STRCET" US| NG | NTERFACE- NAME
W\B- | NTERFACE- NAME- LENGTH
W\B- | NTERFACE- NAME.
SET W5 STRGET TO TRUE.
PERFORM CHECK- STATUS.

LR R R R R RS EEEE SRR EE]

* Interface(s) evaluation:

LRSS SR SRS SRR E SRR SRR RS E RS SRR EEEEEEEEEEEEEEEEEEEEE]

MOVE SPACES TO S| MPLE- SI MPLECBIECT- GPERATI ON

EVALUATE W& | NTERFACE- NAVE
WHEN ' | DL: Si npl e/ Si npl eChj ect: 1. 0

4 * Resolve the pointer reference to the operation infornation

CALL "STRCET" USI NG CPERATI ON- NAME

S| MPLE- S- 3497- GPERATI ON- LENGTH

S| MPLE- S| MPLECBJECT- CPERATI ON
SET W& STRGET TO TRUE
PERFCORM CHECK- STATUS
DI SPLAY "Sinple::" SIMPLE- S| MPLECBIJECT- CPERATI ON

"i nvoked"

END- EVALUATE.

5 COCPY SI MPLED.
GCBACK.

6 DO S| MPLE- S| MPLECBIECT- CALL- ME.
CALL " OCOACET" USI NG SI MPLE- SI MPLECBJECT- 70FE- ARGS.
SET W& COACGET TO TRUE
PERFCRM CHECK- STATUS.

CALL " COAPUT" USI NG SI MPLE- SI MPLECBIECT- 70FE- ARGS.
SET W5 COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

khkkhkkhhkkhhhhhkhkhhhhhkkhkhhhhkhkhkhhhhhkhkhkhhhhkhkhkhhhhhkhkhkhhhhhkhkhkhhhhkkkkhkk

* Check Errors Copybook

LR R R R R R RS EEE R EEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES]

7 COPY CERRSMFA

97

CHAPTER 4 |

Explanation of the CICS SIMPLES
program

98

The SI MPLES program can be explained as follows:

1.

The DI SPATCH logic is automatically coded for you, and the bulk of the
code is contained in the SI MPLED copybook. When an incoming request
arrives from the network, it is processed by the ORB and a call is made
to the DI SPATCH entry point.

CQAREQIs called to provide information about the current invocation
request, which is held in the REQUEST- | NFOblock that is contained in
the OORBA copybook.

QOAREQIs called once for each operation invocation—after a request
has been dispatched to the server, but before any calls are made to
access the parameter values.

STRGET is called to copy the characters in the unbounded string pointer
for the interface name to the string item representing the fully scoped
interface name.

STRGET is called again to copy the characters in the unbounded string
pointer for the operation name to the string item representing the
operation name.

The procedural code used to perform the correct paragraph for the
requested operation is copied into the program from the S| MPLED
copybook.

Each operation has skeleton code, with appropriate calls to COAPUT and
COAGET to copy values to and from the COBOL structures for that
operation’s argument list. You must provide a correct implementation
for each operation. You must call COAGET and COAPUT, even if your
operation takes no parameters and returns no data. You can simply
pass in a dummy area as the parameter list.

The CICS server implementation uses a OOPY CERRSMFA statement
instead of GCPY CGHKERRS.

Note: The supplied SI MPLES program is only a suggested way of
implementing an interface. It is not necessary to have all operations
implemented in the same COBOL program.

Location of the CICS SIMPLES
program

You can find a complete version of the CICS SI MPLES server implementation
program in

99

CHAPTER 4 |

Writing the Server Mainline

The server mainline program The next step is to write the server mainline program in which to run the
server implementation. For the purposes of this example, when you specify
the - Sand - T Cs arguments with the Orbix E2A IDL compiler, it generates
a program called SI MPLESV, which contains the server mainline code.

Note: Unlike the batch server mainline, the CICS server mainline does
not have to create and store stringified object references (IORs) for the
interfaces that it implements, because this is handled by the CICS adapter.

Example of the CICS SIMPLESV The following is an example of the CICS SI MPLESV program:
program

Example 8: The CICS SIMPLESV Demonstration (Sheet 1 of 3)

| DENTI FI CATI ON DI VI SI ON
PROCGRAM | D. SI MPLESV.
ENVI RONVENT D'V SI ON

DATA D'V SI ON

WORKI NG STCRAGE SECTI ON

CCPY S| MPLE

CCPY CORBA

01 ARG LI ST Pl CTURE X(01)
VALUE SPACES.

01 ARG LI ST-LEN PI CTURE 9(09) BI NARY
VALUE 0.

01 CRB- NAME Pl CTURE X(10)
VALUE "si npl e_orb".

01 ORB- NAME- LEN Pl CTURE 9(09) Bl NARY
VALUE 10.

01 SERVER NAMVE Pl CTURE X(07)
VALLUE "sinple "

01 SERVER NAME- LEN Pl CTURE 9(09) Bl NARY
VALUE 6.

01 | NTERFACE- LI ST.

100

Example 8: The CICS SIMPLESV Demonstration (Sheet 2 of 3)

03 FILLER Pl CTURE X(28)
VALUE "I DL: Sinpl e/ Sinpl eChject:1.0 ".
01 | NTERFACE- NAVES- ARRAY REDEFI NES | NTERFACE- LI ST.
03 | NTERFACE- NAME OOCURS 1 Tl MES PI CTURE X(28).

01 CBIJECT-ID-LI ST.
03 F LLER Pl CTURE X(27)
VALUE "Si npl e/ S npl eChj ect _obj ect ".
01 CBIJECT-| D ARRAY REDEFI NES CBJECT- 1D LI ST.
03 CBJECT- | DENTI FI ER OOCQURS 1 TI MES Pl CTURE X(27).

LRSS SR SRS SRR E SRR SRR RS E RS SRR EEEEEEEEEEEEEEEEEEEEE]

* (bject values for the Interface(s)

D R R R

01 SI MPLE-SI MPLECBIECT- CBJ PQA NTER
VALUE NULL.

PROCEDURE D'V SI ON

INT.

CALL " CRBSTAT" USI NG CRBI X- STATUS- | NFCRVATI ON
SET W5 CRBSTAT TO TRUE
PERFCRM CHECK- STATUS.

CALL " CRBARGS! USI NG ARG LI ST
ARG LI ST- LEN
CRB- NAME
CRB- NAMVE- LEN

SET W5 CRBARGS TO TRUE

PERFCRM CHECK- STATUS.

CALL " CRBSRWR! USI NG SERVER- NAVE
SERVER- NAME- LEN.

SET W5- CRBSRVR TO TRE

PERFCRM CHECK- STATUS.

Khkhkhkhkkkhhhhkhkhhhhhkkkhhhhhkhkhhhhkhkhkhhhhkhkkhhhkkkkhhhkhkkkhhhhkkkkkkk

* |Interface Section Bl ock

khkkkhkkhhkhkkhkhkhhhhkhhhhhhkhkhhhhhhhhhhhhhhdhhhhhhdhhhhhdhhhhhdhhrhhdixx

* Generating (bject Reference for interface Sinple/S npl e ect

CALL "CORBREG' USI NG SI MPLE- SI MPLECBIECT- | NTERFACE

101

CHAPTER 4 |

Explanation of the CICS
SIMPLESV program

102

Example 8: The CICS SIMPLESV Demonstration (Sheet 3 of 3)

SET W5- CRBREG TO TRUE.
PERFCRM CHECK- STATUS.

CALL "CBINEW USI NG SERVER- NAME
| NTERFACE- NAME CF | NTERFACE- NAMES- ARRAY(1)
CBJECT- | DENTI FI ER CF CBJECT- | D- ARRAY(1)
S| MPLE- SI MPLECBIECT- CBJ.
SET W& CBINEW TO TRUE.
PERFCRM CHECK- STATUS.

CALL "COARWN'.
SET W5- COARWIN TO TRUE.
PERFCRM CHECK- STATUS.

EXI T- PRG

LR EEE R R RS EEEEEEEE RS EEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE]

* Check Errors Copybook

R R R RS SRR RS SRR RS SRR E SRR EE R EEEEEEEEEEEEEEEEEEEEEES]

CCPY CERRSMFA

The SI MPLESV program can be explained as follows:

1.

CRBSTAT is called to register the ORBI X- STATUS- | NFCRVATI ON block that
is contained in the OGCRBA copybook. Registering the

CRBI X- STATUS- | NFCRVATI ON block allows the COBOL runtime to
populate it with exception information, if necessary.

CRBARGS is called to initialize a connection to the ORB.

CRBSRWR is called to set the server name.

CRBREG s called to register the IDL interface, Si npl eCoj ect, with the
Orbix COBOL runtime.

CBINEWiIs called to create a persistent server object of the

Si npl ehj ect type, with an object ID of ny_si npl e_obj ect .

COARWN is called, to enter the GRB: : run loop, to allow the ORB to
receive and process client requests. This then processes the CORBA
request that the CICS adapter sends to CICS.

Location of the CICS SIMPLESV You can find a complete version of the CICS SI MPLESV server mainline
program program in or bi xhl g. DEMOS. A CS. GOBCL. SRQ(SI MPLESV) after you have run
the supplied SI MPLI DL JCL to run the Orbix E2A IDL compiler.

103

CHAPTER 4 |

Building the Server

Location of the JCL Sample JCL used to compile and link the CICS server mainline and server
implementation is in or bi xhl g. DEMCS. A CS. GCBQL. BU LD. JOL(S| MPLESB) .

Resulting load module When this JCL has successfully executed, it results in a load module that is
contained in or bi xhl q. DEMO5. O CS. GCBQL. LQAD(SI MPLESV) .

104

Preparing the Server to Run in CICS

Overview This section describes the required steps to allow the server to run in a CICS
MPP region. When all the steps in this section have been completed, the
server is started automatically within CICS, as required.

Steps The steps to enable the server to run in a CICS region are:
Step Action
1 | Define an APPC transaction definition or EXCI program

definition for CICS.

2 | Provide the CICS server load module to a CICS region.

3 | Generate mapping file entries for the CICS adapter.

4 | Add the IDL to the Interface Repository.

5 | Obtain the IOR for use by the client program.
Step 1ASDefining program or A CICS APPC transaction definition, or CICS EXCI program definition, must
transaction definition for CICS be created for the server, to allow it to run in CICS. The following is the CICS

APPC transaction definition for the supplied demonstration:

DEFI NE

TRANSACTI ON(SMBV)

GROUP(CRXAPPC)

DESCR PTI O\ O bi x APPC Sinpl e deno transacti on)
PROGRAM Sl MPLESV)

PRCFI LE(DFHO CSA)

TRANCLASS(DFHTCLOO)

DTI MOUT(10)

SPURCE(YES)

TPURGE(YES)

RESSE((YES)

105

CHAPTER 4 |

Step 2AProviding load module to
CICS region

Step 3AGenerating mapping file
entries

106

The following is the CICS EXCI program definition for the supplied
demonstration:

DEFI NE PROGRAM S| MPLESV)

GROUP(CRXDEMD
DESCR PTI O\(C bi x Si npl e deno ser ver)

LANGUAGE(LE370)
DATALCCATI ON(ANY)
EXECUTI ONSET(DPLSUBSET)

See the supplied or bi xhl g. JCL. (CRBI XCSD) for a more detailed example of
how to define the resources that are required to use Orbix with CICS and to
run the supplied demonstrations.

Ensure that the or bi xhl g. DEMOB. A CS. GBQL. LQaD PDS is added to the
DFHRPL for the CICS region that is to run the transaction, or copy the
SI MPLESV load module to a PDS in the DFHRPL of the relevant CICS region.

The CICS adapter requires mapping file entries, so that it knows which CICS
APPC transaction or CICS EXCI program should be run for a particular
interface and operation. The mapping file entry for the supplied example is
contained in or bi xhl g. DEMOS. O CS. MFAMAP(SI MPLEA) (after you run the IDL
compiler) and appears as follows:

(Sinpl e/ Si npl e(hj ect, cal | _ne, S| MPLESV)

Adapter mapping file generation is performed as part of the supplied

or bi xhl g. DEMOS. O CS. GCBQL. BU LD. JO.(SI MPLI DL) JCL. The -nf a:
-ttran_or_program nane argument with the IDL compiler generates the
mapping file. For the purposes of this example, tran_or _progr am nare is
replaced with SI MPLESV. An | DLMFA DD statement must also be provided in
the JCL, to specify the PDS into which the mapping file is generated. See
the CICS Adapter Administratoris Guide for full details about adapter
mapping files.

Step 4OAdding IDL to Interface
Repository

The CICS adapter needs to be able to obtain the IDL for the COBOL server
from the Interface Repository, so that it knows what data types it has to
marshal into CICS for the server, and what data types it can expect back
from the CICS APPC transaction or CICS EXCI program. Ensure that the
relevant IDL for the server has been added to the Interface Repository before
the CICS adapter is started.

To add IDL to the Interface Repository, the Interface Repository must be
running. You can use the JCL in or bi xhl g. JOL(I FR) to start it. The Interface
Repository uses the Orbix E2A configuration member for its settings. The
JCL that you use to start the Interface Repository uses a configuration
member that is provided in or bi xhl g. DOVAI NS(FI LEDOWA) .

The following JCL that adds IDL to the Interface Repository is supplied in
or bi xhl q. DEMDS. O CS. GOBCL. BU LD, JCL(S| MPLEREG) .

/1 JCLLI B ORDER=(H.Q ASP50. PROCS)

/1 | NCLUDE MEMBER=(CRXVARS)

//1DLCBL EXEC ORXI DL,

/1 SOURCE=S| MPLE,

/1 | DL=4CRBI X. . DEMDS. | DL,

/1 OOPYLI B=&CRB| X. . DEMD5. O CS, CCBOL. CCPYLI B,
/1 | MPL=8CRBI X. . DEMCS, O CS. GOBCL. SRC,

/1 | DLPARVE - R

107

CHAPTER 4 |

Step 5A0btaining the adapter The final step is to use the resol ve command, to obtain the IOR that the
IOR client needs to locate the CICS adapter. To obtain the CICS adapter’s IOR,
the following prerequisites apply:

I The Interface Repository must be running and contain the relevant IDL.
See “Step 4—Adding IDL to Interface Repository” on page 107 for
details of how to start it, if it is not already running.

1 The CICS adapter must be running. See the CICS Adapter
Administratoris Guide for more details about it and how to start it.

I The CICS adapter mapping file must contain the relevant mapping
entries. For the purposes of this example, ensure that the
or bi xhl g. DEMDS. O CS. MFAMAP(S| MPLEA) mapping member is being
used. See the CICS Adapter Administratoris Guide for details about
adapter mapping files.

The following JCL, which includes the resol ve command to obtain the IOR,
is supplied in or bi xhl gq. DEMDS. O CS. GOBCL. BU LD. JOL(SI MPLI OR) .

/1 JCLLI B ORDER=(H.Q ASP50. PROCS)
/1 I NCLUDE MEMBER=(CRXVARS)
/| REG EXEC PROC=CRXADM N,

/1 PPARME nfa resolve Sinple/S npleChject > DD | R
/11 CR DD DSN=&CRBI X. . DEMXS. | CRS(S| MPLE) , DI SP=SHR

108

Developing and Running the Client

Overview This section describes the steps you must follow to develop, and
subsequently run, the client executable for your application.

Note: The Orbix E2A IDL compiler does not generate COBOL client stub

code.
Steps to develop the client The steps to develop and run the client application are:
Step Action

1 | “Writing the Client” on page 110.

2 | “Building and Running the Client” on page 115.

109

CHAPTER 4 |

Writing the Client

The client program

Example of the SIMPLECL
program

110

The next step is to write the client program, to implement the client. This
example uses the supplied SI MPLEQL client demonstration.

The following is an example of the S| MPLECL program:

Example 9: The SIMPLECL Demonstration Program (Sheet 1 of 3)

| DENTI FI CATI CN D' M SI ON
PROGRAM | D. SI MPLECL.

ENVI RONVENT D'V SI ON
CONFlI GURATI OGN SECTI ON
I NPUT- QUTPUT SECTI ON
FI LE- CONTRCL.
QCPY | CRSLCT REPLAC NG
"X-1CR' BY SI MPLE- S| MPLECBIECT- | CR
"X-1CRFI LE' BY "I CRFI LE!
"X- 1 OR- STAT" BY SI MPLE- SI MPLECBJECT- | CR- STAT.
DATA DM SI ON
FI LE SECTI ON

QCPY | CRFD REPLACI NG
"X-1CR' BY S| MPLE- SI MPLECBIECT- | CR
"X-REC' BY S| MPLE- SI MPLECBIECT- REC.

WRKI NG STCRAGE SECTI ON

QOPY S MPLE.

OOPY CCRBA

01 W& S| MPLE-1 CR Pl CTURE X(2048) .

01 S| MPLE- | OR LENGTH Pl CTURE 9(9) BI NARY
VALUE 2048.

01 S| MPLE- S| MPLECBJECT- | GR STAT Pl CTURE 9(02).

01 S| MPLE- S| MPLECBJECT- CBJ PO NTER
VALUE NULL.

01 ARG LIST Pl CTURE X(1)
VALUE SPACES.

01 ARG LI ST- LEN Pl CTURE 9(09) Bl NARY
VALLE 0.

Example 9: The SIMPLECL Demonstration Program (Sheet 2 of 3)

01 CRB-NAME Pl CTURE X(10)
VALLE "si npl e_orb".
01 CRB- NAME- LEN PI CTURE 9(09) Bl NARY
VALUE 10.
01 | OR REG PTR PA NTER
VALUE NULL.
01 | OR REG LEN Pl CTURE 9(09) Bl NARY
VALUE 2048.

QCPY PROCPARM

*

CALL "CRBSTAT" USI NG CRBI X- STATUS- | NFCRVATI O\

CRB initialization

DI SPLAY "Initializing the CRB".

CALL "CRBARGS' USING ARG LI ST
ARG LI ST- LEN
CRB- NAMVE
CRB- NAMVE- LEN

SET W5 CRBARGS TO TRUE

PERFORM CHECK- STATUS.

* Register interface TypeTest

* %

* %

DI SPLAY "Regi stering the Interface".

CALL "CRBREG' USING S| MPLE- S| MPLECBIECT- | NTERFACE.
SET W5 CRBREG TO TRUE.

PERFCRM CHECK- STATUS.

Read in the ICR froma file which has been popul at ed
by the server program

CPEN | NPUT SI MPLE- SI MPLECBIECT- | CR
OCPY GKFI LE REPLACI NG
"X-1CR STAT" BY SI MPLE- S| MPLECBJECT- | CR- STAT.

DI SPLAY "Readi ng obj ect reference fromfile".
READ S| MPLE- SI MPLECBIECT- | OR
CCPY CHKFI LE REPLAQ NG

"X-1 OR- STAT" BY S| MPLE- S| MPLECBJECT- | CR- STAT.

MOVE S| MPLE- S| MPLECBIECT- REC TO W& SI MPLE- | CR

* | R Record read successfully

CLCSE SI MPLE- S| MPLEGBIECT- | CR
OCPY GKFI LE REPLACI NG

111

CHAPTER 4 |

Example 9: The SIMPLECL Demonstration Program (Sheet 3 of 3)

"X-1 CR- STAT" BY S| MPLE- S| MPLECBJECT- | CR- STAT.
* Set the CCBQL pointer to point to the ICR string
5 CALL " STRSET" USI NG | R REG- PTR
| OR REG LEN
W5 S| MPLE- | CR
SET W5 STRSET TO TRUE.
PERFORM CHECK- STATUS.

* (btain object reference fromthe IR
6 CALL "STRTOOBJ" USING | CR REG PTR
S| MPLE- S| MPLECBIECT- CBJ

SET W5 STRTQCBJ TO TRUE
PERFCRM CHECK- STATUS.

* Rel easi ng the nenory
CALL "STRFREE' USI NG | OR REC PTR
SET W& STRFREE TO TRUE.
PERFORM CHECK- STATUS.

SET SI MPLE- S| MPLECBJECT- CALL- ME TO TRUE
D SPLAY "invoking Sinple::" Sl MPLE-SI MPLECBIECT- CPERATI ON

7 CALL " CRBEXEC! USI NG SI MPLE- SI MPLECBIECT- CBJ
S| MPLE- S| MPLECBIECT- CPERATI CN
S| MPLE- S| MPLECBJECT- 70FE- ARGS
S| MPLE- USER- EXCEPTI ONS.
SET W& CRBEXEC TO TRIE
PERFCRM CHECK- STATUS.

CALL "CBIREL" USI NG SI MPLE- SI MPLECBJECT- CBJ.
SET W& CBJREL TO TRUE.
PERFCRM CHECK- STATUS.

Dl SPLAY “Sinpl e deno conpl ete. ™.

o

* Check Errors Copybook

khkkkhkhkkhkhkhkhkhkhkhhhkhkhkhhhhhkhkhhhhhhkhhhhhhkhhhhhhkhhkhhhhkhkhhhhhkhkhkkhhhhkhkhkkxx

CCPY GHKERRS.

112

Explanation of the SIMPLECL The SI MPLECL program can be explained as follows:

program 1. ORBSTAT is called to register the ORBI X- STATUS- | NFCRVATI ON block that
is contained in the CORBA copybook. Registering the
CRBI X- STATUS- | NFCRVATI ON block allows the COBOL runtime to
populate it with exception information, if necessary.

You can use the ORBI X- STATUS- | NFCRVATI N data item (in the CORBA
copybook) to check the status of any Orbix call. The EXCEPTI ON- NUVBER
numeric data item is important in this case. If this item is 0, it means
the call was successful. Otherwise, EXCEPTI ON- NUMBER holds the
system exception number that occurred. You should test this data item
after any Orbix call.

2. CRBARGS s called to initialize a connection to the ORB.

3. CRBREGIs called to register the IDL interface with the Orbix COBOL
runtime.

4. The client reads the stringified object reference for the object from the
PDS member that has been populated by the server. For the purposes
of this example, the IOR member is contained in
or bi xhl q. DEM3S. | CRS(SI MPLE) .

Bb. STRSET is called to create an unbounded string to which the stringified
object reference is copied.

6. STRTOCRI is called to create an object reference to the server object
that is represented by the IOR. This must be done to allow operation
invocations on the server. The STRTOOBJ call takes an interoperable
stringified object reference and produces an object reference pointer.
This pointer is used in all method invocations. See the CORBA
Programmeris Reference, C++ for more details about stringified
object references

7. After the object reference is created, CRBEXEC is called to invoke
operations on the server object represented by that object reference.
You must pass the object reference, the operation name, the argument
description packet, and the user exception buffer. The operation name
must have at least one trailing space. The generated operation
condition names found in the SI MPLE copybook already handle this.

113

CHAPTER 4 |

The same argument description is used by the server, and is found in
the SI MPLE copybook. For example, see
or bi xhl g. DEMDS. GCBCL. CCPYLI B(S| MPLE) .

Location of the SIMPLECL You can find a complete version of the SI MPLEQL client program in
program or bi xhl g. DEMCS. GOBCL. SRQ(S| MPLECL) .

114

Building and Running the Client

JCL to build the client Sample JCL used to compile and link the client can be found in the third
step of or bi xhl q. DEMDS. GCBCL. BU LD. JOL(SI MPLECB) .

Resulting load module When the JCL has successfully executed, it results in a load module that is
contained in or bi xhl g. DEMOS. OCBQL. LQAD(SI MPLEQL) .

JCL to run the client Provided the CICS adapter has been started, you can use the following JCL
to run the supplied SI MPLECL client application:

or bi xhl g. DEMCS. CCBOL. RN JCL(SI MPLEQL)

Note: See the CICS Adapter Administratoris Guide for details of how to
start the CICS adapter.

Client output The following is an example of the output produced by the batch client for
the supplied demonstration:

Initializing the CRB

Regi stering the Interface

Readi ng obj ect reference fromfile
invoking Sinple::call_me

Si npl e deno conpl et e.

115

CHAPTER 4 |

116

In this chapter

CHAPTER 5

IDL Interfaces

The CORBA Interface Definition Language (IDL) is used to
describe the interfaces of objects in an enterprise application.
An objectis interface describes that object to potential clients
through its attributes and operations, and their signatures.
This chapter describes IDL semantics and uses.

This chapter discusses the following topics:

IDL page 118
Modules and Name Scoping page 119
Interfaces page 120
IDL Data Types page 140
Defining Data Types page 154

117

CHAPTER 5 | IDL Interfaces

IDL

Overview

IDL standard mappings

Overall structure

IDL definition structure

118

An IDL-defined object can be implemented in any language that IDL maps
to, including C++, Java, COBOL, and PL/I. By encapsulating object
interfaces within a common language, IDL facilitates interaction between
objects regardless of their actual implementation. Writing object interfaces
in IDL is therefore central to achieving the CORBA goal of interoperability
between different languages and platforms.

CORBA defines standard mappings from IDL to several programming
languages, including C++, Java, COBOL, and PL/I. Each IDL mapping
specifies how an IDL interface corresponds to a language-specific
implementation. The Orbix E2A IDL compiler uses these mappings to
convert IDL definitions to language-specific definitions that conform to the
semantics of that language.

You create an application’s IDL definitions within one or more IDL modules.
Each module provides a naming context for the IDL definitions within it.
Modules and interfaces form naming scopes, so identifiers defined inside an
interface need to be unique only within that interface.

In the following example, two interfaces, Bank and Account , are defined
within the BankDeno module:

nodul e BankDeno

}{nterface Bank {
/...
i
interface Account {
/...
H
IE

Modules and Name Scoping

Modules and Name Scoping

Resolving a name

Referencing interfaces

Nesting restrictions

To resolve a name, the IDL compiler conducts a search among the following
scopes, in the order outlined:

1. The current interface.
2. Base interfaces of the current interface (if any).

3. The scopes that enclose the current interface.

Interfaces can reference each other by name alone within the same module.
If an interface is referenced from outside its module, its name must be fully
scoped with the following syntax:

nodul e- nane: : i nt er f ace- nane

For example, the fully scoped names of the Bank and Account interfaces
shown in “IDL definition structure” on page 118 are, respectively,
BankDeno: : Bank and BankDeno: : Account .

A module cannot be nested inside a module of the same name. Likewise,
you cannot directly nest an interface inside a module of the same name. To
avoid name ambiguity, you can provide an intervening name scope as
follows:

nodul e A

{

nodul e B

{

interface A {
/...

119

CHAPTER 5 | IDL Interfaces

Interfaces

In this section The following topics are discussed in this section:
Interface Contents page 122
Operations page 123
Attributes page 126
Exceptions page 127
Empty Interfaces page 128
Inheritance of Interfaces page 129
Multiple Inheritance page 130

Overview Interfaces are the fundamental abstraction mechanism of CORBA. An

interface defines a type of object, including the operations that object
supports in a distributed enterprise application.

Every CORBA object has exactly one interface. However, the same interface
can be shared by many CORBA objects in a system. CORBA object
references specify CORBA objects (that is, interface instances). Each
reference denotes exactly one object, which provides the only means by
which that object can be accessed for operation invocations.

Because an interface does not expose an object’s implementation, all
members are public. A client can access variables in an object’s
implementation only through an interface’s operations and attributes.

Operations and attributes An IDL interface generally defines an object’s behavior through operations
and attributes:
T Operations of an interface give clients access to an object’s behavior.
When a client invokes an operation on an object, it sends a message to
that object. The ORB transparently dispatches the call to the object,

120

Interfaces

whether it is in the same address space as the client, in another
address space on the same machine, or in an address space on a
remote machine.

I An IDL attribute is short-hand for a pair of operations that get and,
optionally, set values in an object.

Account interface IDL sample In the following example, the Account interface in the BankDeno module
describes the objects that implement the bank accounts:

nodul e BankDeno

{
typedef float CashAmount; // Type for representing cash
typedef string Accountld; //Type for representing account ids
/...
interface Account {
readonly attribute Accountld account_id;
readonly attribute CashAnount bal ance;
voi d
wi t hdraw(i n CashAnount arount)
rai ses (InsufficientFunds);
voi d
deposi t (i n CashArount anount);
IE
H
Code explanation This interface has two readonly attributes, Account | d and bal ance, which

are respectively defined as typedefs of the string and 1 oat types. The
interface also defines two operations, wi t hdraw() and deposit (), which a
client can invoke on this object.

121

CHAPTER 5 | IDL Interfaces

Interface Contents

IDL interface components An IDL interface definition typically has the following components.
T Operation definitions.
T Attribute definitions
T Exception definitions.
T Type definitions.
T Constant definitions.

Of these, operations and attributes must be defined within the scope of an
interface, all other components can be defined at a higher scope.

122

Interfaces

Operations

Overview

Operation components

Operations IDL sample

Operations of an interface give clients access to an object’s behavior. When
a client invokes an operation on an object, it sends a message to that object.
The ORB transparently dispatches the call to the object, whether it is in the
same address space as the client, in another address space on the same
machine, or in an address space on a remote machine.

IDL operations define the signature of an object’s function, which client
invocations on that object must use. The signature of an IDL operation is
generally composed of three components:

T Return value data type.
T Parameters and their direction.
T Exception clause.

An operation’s return value and parameters can use any data types that IDL
supports.

Note: Not all CORBA 2.3 IDL data types are supported by COBOL or
PL/I.

In the following example, the Account interface defines two operations,
wi t hdraw() and deposit (), and an I nsuf fi ci ent Funds exception:

nodul e BankDeno

{
typedef float CashAmount; // Type for representing cash
/...
interface Account {
exception |InsufficientFunds {};
voi d
wi t hdraw(i n CashAnount armount)
rai ses (InsufficientFunds);
voi d
deposi t (i n CashAmount anount);
Bé
H

123

CHAPTER 5 | IDL Interfaces

Code explanation

Parameter direction

Parameter-passing mode
qualifiers

One-way operations

124

On each invocation, both operations expect the client to supply an argument
for the anount parameter, and return voi d. Invocations on the wi t hdr aw()
operation can also raise the | nsuf fi ci ent Funds exception, if necessary.

Each parameter specifies the direction in which its arguments are passed
between client and object. Parameter-passing modes clarify operation
definitions and allow the IDL compiler to accurately map operations to a
target programming language. The COBOL runtime uses parameter-passing
modes to determine in which direction or directions it must marshal a
parameter.

There are three parameter-passing mode qualifiers:

in This means that the parameter is initialized only by the
client and is passed to the object.

out This means that the parameter is initialized only by the
object and returned to the client.

i nout This means that the parameter is initialized by the client

and passed to the server; the server can modify the value
before returning it to the client.

In general, you should avoid using i nout parameters. Because an i nout
parameter automatically overwrites its initial value with a new value, its
usage assumes that the caller has no use for the parameter’s original value.
Thus, the caller must make a copy of the parameter in order to retain that
value. By using the two parameters, i n and out, the caller can decide for
itself when to discard the parameter.

By default, IDL operations calls are synchronous&that is, a client invokes an
operation on an object and blocks until the invoked operation returns. If an
operation definition begins with the keyword oneway, a client that calls the
operation remains unblocked while the object processes the call.

Note: The COBOL runtime does not support one-way operations.

One-way operation constraints

One-way operation IDL sample

Interfaces

The COBOL runtime cannot guarantee the success of a one-way operation
call. Because one-way operations do not support return data to the client,
the client cannot ascertain the outcome of its invocation. The COBOL
runtime indicates failure of a one-way operation only if the call fails before it
exits the client’s address space; in this case, the COBOL runtime raises a
system exception.

A client can also issue non-blocking, or asynchronous, invocations. Refer to
the CORBA Programmeris Guide, C++ for more details.

Three constraints apply to a one-way operation:
+ The return value must be set to voi d.
. Directions of all parameters must be set to i n.

* No rai ses clause is allowed.

In the following example, the Account interface defines a one-way operation
that sends a notice to an Account object:

nmodul e BankDero {
/...
interface Account {
oneway void notice(in string text);
/...
b

125

CHAPTER 5 | IDL Interfaces

Attributes

Overview

Qualified and unqualified
attributes

IDL readonly attributes sample

Code explanation

126

An interface’s attributes correspond to the variables that an object
implements. Attributes indicate which variable in an object are accessible to
clients.

Unqualified attributes map to a pair of get and set functions in the
implementation language, which allow client applications to read and write
attribute values. An attribute that is qualified with the readonl y keyword
maps only to a get function.

For example the Account interface defines two readonly attributes,

Account | d and bal ance. These attributes represent information about the
account that only the object’s implementation can set; clients are limited to
readonly access:

nodul e BankDero
{
typedef float CashAnount; // Type for representing cash
typedef string Accountld; //Type for representing account ids
/...
interface Account {
readonly attribute Accountld account id;
readonly attribute CashAnount bal ance;

voi d
w t hdraw(in CashAmount anount)
rai ses (InsufficientFunds);

voi d
deposi t (i n CashAmount anount);

The Account interface has two readonly attributes, Account | d and bal ance,
which are respectively defined as typedefs of the string and f1 oat types.
The interface also defines two operations, wi t hdraw() and deposit(),
which a client can invoke on this object.

Interfaces

Exceptions

IDL and exceptions

The raises clause

Example of IDL-defined
exceptions

IDL operations can raise one or more CORBA-defined system exceptions.
You can also define your own exceptions and explicitly specify these in an
IDL operation. An IDL exception is a data structure that can contain one or
more member fields, formatted as follows:

exception exception-name {
[menber;] ...
H

Exceptions that are defined at module scope are accessible to all operations
within that module; exceptions that are defined at interface scope are
accessible on to operations within that interface.

After you define an exception, you can specify it through a rai ses clause in
any operation that is defined within the same scope. A rai ses clause can
contain multiple comma-delimited exceptions:

return-val operation-nane([parans-list])
rai ses(exception-nane[, exception-nanme]);

The Account interface defines the I nsuf fi ci ent Funds exception with a
single member of the stri ng data type. This exception is available to any
operation within the interface. The following IDL defines the wi t hdr aw()
operation to raise this exception when the withdrawal fails:

nmodul e BankDeno

{
typedef float CashAmount; // Type for representing cash
/...
interface Account {
exception |InsufficientFunds {};
voi d
wi t hdraw(i n CashAnount armount)
rai ses (InsufficientFunds);
/...
ik
ik

127

CHAPTER 5 | IDL Interfaces

Empty Interfaces

Defining empty interfaces

IDL empty interface sample

128

IDL allows you to define empty interfaces. This can be useful when you wish
to model an abstract base interface that ties together a number of concrete
derived interfaces.

In the following example, the CORBA Port abl eSer ver module defines the
abstract Servant Manager interface, which serves to join the interfaces for
two servant manager types, Servant Acti vat or and Ser vant Locat or :

nodul e Port abl eSer ver

{
interface Servant Manager {};
interface ServantActivator : Servant Manager {
/...
IE
interface ServantlLocator : Servant Manager {
/...
ik
b

Interfaces

Inheritance of Interfaces

Inheritance overview

Inheritance interface IDL sample

Code sample explanation

An IDL interface can inherit from one or more interfaces. All elements of an
inherited, or base interface, are available to the derived interface. An
interface specifies the base interfaces from which it inherits, as follows:

interface newinterface : base-interface[, base-interface]...

{3

In the following example, the Checki ngAccount and Savi ngsAccount
interfaces inherit from the Account interface, and implicitly include all its
elements:

nmodul e BankDeno{
typedef float CashAmount; // Type for representing cash
interface Account {
/...

¥

interface Checki ngAccount : Account {
readonly attribute CashAmount overdraftLimt;
bool ean or der CheckBook ();

ik

interface Savi ngsAccount : Account {
float cal culatelnterest ();

¥

An object that implements the Checki ngAccount interface can accept
invocations on any of its own attributes and operations as well as
invocations on any of the elements of the Account interface. However, the
actual implementation of elements in a Checki ngAccount object can differ
from the implementation of corresponding elements in an Account object.
IDL inheritance only ensures type-compatibility of operations and attributes
between base and derived interfaces.

129

CHAPTER 5 | IDL Interfaces

Multiple Inheritance

Multiple inheritance IDL sample In the following IDL definition, the BankDeno module is expanded to include
the Prem umAccount interface, which inherits from the thecki ngAccount and
Savi ngsAccount interfaces:

nmodul e BankDeno {
interface Account {
/...

%

i nterface Checki ngAccount : Account {
/...

¥

interface Savi ngsAccount : Account {
/...

%

interface Prem umAccount :
Checki ngAccount, Savi ngsAccount {
/...

¥

Multiple inheritance constraints Multiple inheritance can lead to name ambiguity among elements in the
base interfaces. The following constraints apply:

T Names of operations and attributes must be unique across all base
interfaces.

T Ifthe base interfaces define constants, types, or exceptions of the same
name, references to those elements must be fully scoped.

130

Interfaces

Inheritance hierarchy diagram Figure 4 shows the inheritance hierarchy for the Account interface, which is
defined in “Multiple inheritance IDL sample” on page 130.

| Account |

Checki ngAccount Savi ngsAccount

Pr em umAccount

Figure 4: Inheritance Hierarchy for PremiumAccount Interface

131

CHAPTER 5 | IDL Interfaces

Inheritance of the Object Interface

User-defined interfaces

Object locator IDL sample

132

All user-defined interfaces implicitly inherit the predefined interface oj ect .
Thus, all oj ect operations can be invoked on any user-defined interface.
You can also use (oj ect as an attribute or parameter type to indicate that
any interface type is valid for the attribute or parameter.

For example, the following operation get AnyQhj ect () serves as an
all-purpose object locator:

interface (bjectlLocator {
voi d get Any(hj ect (out (bject obj);
ik

Note: Itis illegal in IDL syntax to explicitly inherit the Coj ect interface.

Interfaces

Inheritance Redefinition

Overview A derived interface can modify the definitions of constants, types, and
exceptions that it inherits from a base interface. All other components that
are inherited from a base interface cannot be changed.

Inheritance redefinition IDL In the following example, the Checki ngAccount interface modifies the
sample definition of the I nsuf fi ci ent Funds exception, which it inherits from the
Account interface:

nodul e BankDeno

{
typedef float CashAnount; // Type for representing cash
/...
interface Account {
exception | nsufficientFunds {};
/...
ik
i nterface Checki ngAccount : Account {
exception | nsufficientFunds {
CashAmount overdraftLinit;
IE
b
/1.
H

Note: While a derived interface definition cannot override base operations
or attributes, operation overloading is permitted in interface
implementations for those languages, such as C++, which support it.
However, COBOL does not support operation overloading.

133

CHAPTER 5 | IDL Interfaces

Forward Declaration of IDL Interfaces

Overview An IDL interface must be declared before another interface can reference it.
If two interfaces reference each other, the module must contain a forward
declaration for one of them; otherwise, the IDL compiler reports an error. A
forward declaration only declares the interface’s name; the interface’s actual
definition is deferred until later in the module.

Forward declaration IDL sample In the following example, the Bank interface defines a creat e_account ()
and fi nd_account () operation, both of which return references to Account
objects. Because the Bank interface precedes the definition of the Account
interface, Account is forward-declared:

nodul e BankDeno

{
typedef float CashAmount; // Type for representing cash
typedef string Accountld; //Type for representing account ids
/1 Forward decl aration of Account
interface Account;
/1 Bank interface...used to create Accounts
interface Bank {
exception Account Al readyExi sts { Accountld account_id; };
except i on Account Not Found { Accountld account_id; };
Account
find_account (in Accountld account _id)
rai ses(Account Not Found) ;
Account
creat e_account (
in Accountld account _id,
in CashAnrount initial_bal ance
) raises (Account Al readyExists);
H
/1 Account interface.used to deposit, wthdraw, and query
// availabl e funds.
interface Account { //...
i
IE

134

Interfaces

Local Interfaces

Overview

Characteristics

An interface declaration that contains the IDL | ocal keyword defines a local
interface. An interface declaration that omits this keyword can be referred to
as an unconstrained interface, to distinguish it from local interfaces. An object
that implements a local interface is a local object.

Note: The COBOL runtime and the Orbix E2A IDL compiler do not
support local interfaces.

Local interfaces differ from unconstrained interfaces in the following ways:

A local interface can inherit from any interface, whether local or
unconstrained. Unconstrained interfaces cannot inherit from local
interfaces.

Any non-interface type that uses a local interface is regarded as a local
type. For example, a struct that contains a local interface member is
regarded as a local struct, and is subject to the same localization
constraints as a local interface.

Local types can be declared as parameters, attributes, return types, or
exceptions only in a local interface, or as state members of a valuetype.
Local types cannot be marshalled, and references to local objects
cannot be converted to strings through CRB: : obj ect _to_string(). Any
attempts to do so throw a CORBA: : MARSHAL exception.

Any operation that expects a reference to a remote object cannot be
invoked on a local object. For example, you cannot invoke any DIl
operations or asynchronous methods on a local object; similarly, you
cannot invoke pseudo-object operations such asis_a() or

val i dat e_connecti on() . Any attempts to do so throw a

QCRBA: : NO | MPLEMENT exception.

The ORB does not mediate any invocations on a local object. Thus,
local interface implementations are responsible for providing the
parameter copy semantics that a client expects.

135

CHAPTER 5 | IDL Interfaces

T Instances of local objects that the OMG defines, as supplied by ORB
products, are exposed either directly or indirectly through
ORB: :resolve_initial _references().

Implementation Local interfaces are implemented by GORBA: : Local Qbj ect to provide
implementations of (bj ect pseudo-operations, and other ORB-specific
support mechanisms that apply. Because object implementations are
language-specific, the Local Qbj ect type is only defined by each language
mapping.

Local object pseudo-operations The Local Qbj ect type implements the (oj ect pseudo-operations shown in
Table 15.

Table 15: CORBA::LocalObject Pseudo-Operations and Return Values

Operation Always returnsO

is_a() an exception of NO | MPLEMENT:

get _interface() an exception of NO_| MPLEMENT:

get _domai n_nanager s() an exception of NO_ | MPLEMENT:

get _policy() an exception of NO_| MPLEMENT:

get _client_policy() an exception of NO | MPLEMENT:

set_policy_overrides() an exception of NO_| MPLEMENT:

get _pol i cy_overri des() an exception of NO_| MPLEMENT:

val i dat e_connecti on() an exception of NO | MPLEMENT:

non_exi steent () false.

hash() a hash value that is consistent with the
object’s lifetime.

i s_equi val ent () true, if the references refer to the same
Local (oj ect implementation.

136

Interfaces

Valuetypes

Overview

Characteristics

Valuetype support

Valuetype invocations

Valuetypes enable programs to pass objects by value across a distributed
system. This type is especially useful for encapsulating lightweight data
such as linked lists, graphs, and dates.

Note: The COBOL runtime and the Orbix E2A IDL compiler do not
support valuetypes.

Valuetypes can be seen as a cross between the following:

T Data types, such as | ong and stri ng, which can be passed by value
over the wire as arguments to remote invocations.

T Objects, which can only be passed by reference.

When a program supplies an object reference, the object remains in its

original location; subsequent invocations on that object from other address

spaces move across the network, rather than the object moving to the site of
each request.

Like an interface, a valuetype supports both operations and inheritance from
other valuetypes; it also can have data members. When a valuetype is
passed as an argument to a remote operation, the receiving address space
creates a copy of it. The copied valuetype exists independently of the
original; operations that are invoked on one have no effect on the other.

Because a valuetype is always passed by value, its operations can only be
invoked locally. Unlike invocations on objects, valuetype invocations are
never passed over the wire to a remote valuetype.

137

CHAPTER 5 | IDL Interfaces

Valuetype implementations

138

Valuetype implementations necessarily vary, depending on the languages
used on sending and receiving ends of the transmission, and their respective
abilities to marshal and demarshal the valuetype’s operations. A receiving
process that is written in C++ must provide a class that implements
valuetype operations and a factory to create instances of that class. These
classes must be either compiled into the application, or made available
through a shared library. Conversely, Java applications can marshal enough
information on the sender, so the receiver can download the bytecodes for
the valuetype operation implementations.

Interfaces

Abstract Interfaces

Overview

IDL abstract interface sample

Abstract interface IDL sample

An application can use abstract interfaces to determine at runtime whether
an object is passed by reference or by value.

Note: The COBOL runtime and the Orbix E2A IDL compiler do not
support abstract interfaces.

In the following example, the IDL definitions specify that the

Exanpl e: : di spl ay() operation accepts any derivation of the abstract
interface, Descri babl e:

abstract interface Describable {
string get_description();

IH

interface Exanpl e {

voi d di spl ay(in Describabl e soneChj ect);
ik

Based on the preceding IDL, you can define two derivations of the

Descri babl e abstract interface—the Qurrency valuetype and the Account
interface:

interface Account : Describable {
/1 body of Account definition not shown

¥

val uet ype Qurrency supports Describable {
// body of Qurrency definition not shown
H

Note: Because the parameter for di spl ay() is defined as a Descri babl e

type, invocations on this operation can supply either Account objects or
Qurrency valuetypes.

139

CHAPTER 5 | IDL Interfaces

IDL Data Types

In this section

Data type categories

140

The following topics are discussed in this section:

Built-in Data Types page 141
Extended Built-in Data Types page 143
Complex Data Types page 146
Enum Data Type page 147
Struct Data Type page 148
Union Data Type page 149
Arrays page 151
Sequence page 152
Pseudo Object Types page 153

In addition to IDL module, interface, valuetype, and exception types, IDL

data types can be grouped into the following categories:

1 Built-in types such as short, | ong, and fl oat .

Extended built-in types such as 1 ong 1 ong and wst ri ng.

1
I Complex types such as enum struct, and string.
T Pseudo objects.

Note: Not all CORBA 2.3 IDL data types are supported by COBOL or

PL/I.

IDL Data Types

Built-in Data Types

List of types, sizes, and values Table 16 shows a list of CORBA IDL built-in data types (where the < symbol

means ’less than or equal to’).

Floating point types

Table 16: Built-in IDL Data Types, Sizes, and Values

Data type Size Range of values

short < 16 bits 2152151

unsigned short < 16 bits 0..2161

long < 32 bits —231 2311

unsigned long < 32 bits 0..2%21

float < 32 bits |IEEE single-precision floating
point numbers

double < 64 bits IEEE double-precision
floating point numbers

char < 8 bits ISO Latin-1

string Variable length ISO Latin-1, except NUL

string<bound> Variable length ISO Latin-1, except NUL

boolean Unspecified TRUE or FALSE

octet < 8 bits 0x0 to Oxff

any Variable length Universal container type

The float and double types follow IEEE specifications for single-precision
and double-precision floating point values, and on most platforms map to
native IEEE floating point types.

141

CHAPTER 5 | IDL Interfaces

Char type

String type

Bounded and unbounded strings

Octet type

Any type

142

The char type can hold any value from the ISO Latin-1 character set. Code
positions 0-127 are identical to ASCII. Code positions 128-255 are
reserved for special characters in various European languages, such as
accented vowels.

The st ring type can hold any character from the ISO Latin-1 character set,
except NUL. IDL prohibits embedded NUL characters in strings. Unbounded
string lengths are generally constrained only by memory limitations. A
bounded string, such as st ri ng<10>, can hold only the number of
characters specified by the bounds, excluding the terminating NUL character.
Thus, a string<6> can contain the six-character string, cheese.

The declaration statement can optionally specify the string’'s maximum
length, thereby determining whether the string is bounded or unbounded:

string[length] nane

For example, the following code declares the Short String type, which is a
bounded string with a maximum length of 10 characters:

typedef string<10> ShortString;
attribute ShortString shortNane; // max length is 10 chars

Cct et types are guaranteed not to undergo any conversions in transit. This
lets you safely transmit binary data between different address spaces. Avoid
using the char type for binary data, inasmuch as characters might be
subject to translation during transmission. For example, if a client that uses
ASCII sends a string to a server that uses EBCDIC, the sender and receiver
are liable to have different binary values for the string’s characters.

The any type allows specification of values that express any IDL type, which
is determined at runtime; thereby allowing a program to handle values
whose types are not known at compile time. An any logically contains a
TypeCode and a value that is described by the TypeCode. A client or server
can construct an any to contain an arbitrary type of value and then pass this
call in a call to the operation. A process receiving an any must determine
what type of value it stores and then extract the value via the TypeCode.
Refer to the CORBA Programmeris Guide, C++ for more details about the

any type.

IDL Data Types

Extended Built-in Data Types

List of types, sizes, and values Table 17 shows a list of CORBA IDL extended built-in data types (where the
< symbol means 'less than or equal to’).

Table 17: Extended built-in IDL Data Types, Sizes, and Values

Data Type Size Range of Values
long long? < 64 bits —263 2631
unsigned long long? <long el
Long long type The 64-bit integer types, 1 ong | ong and unsi gned | ong | ong, support

numbers that are too large for 32-bit integers. Platform support varies. If
you compile IDL that contains one of these types on a platform that does not
support it, the compiler issues an error.

143

CHAPTER 5 | IDL Interfaces

Long double type

Wchar type

Wstring type

Fixed type

144

Like 64-bit integer types, platform support varies for the | ong doubl e type,
S0 usage can yield IDL compiler errors.

The wechar type encodes wide characters from any character set. The size of
a wchar is platform-dependent. Because Orbix E2A currently does not
support character set negotiation, use this type only for applications that are
distributed across the same platform.

The wst ri ng type is the wide-character equivalent of the string type. Like
string types, wstring types can be unbounded or bounded. Wide strings
can contain any character except NUL.

IDL specifies that the fi xed type provides fixed-point arithmetic values with
up to 31 significant digits. However, due to restrictions in the COBOL
compiler for 0S/390, only up to 18 significant digits are supported.

You specify a fi xed type with the following format:
typedef fixed<digit-size, scal e> nane

The format for the fixed type can be explained as follows:

I The digit-size represents the number’s length in digits. The
maximum value for di gi t - si ze is 31 and it must be greater than
scal e. A fi xed type can hold any value up to the maximum value of a
doubl e type.

I If scal e is a positive integer, it specifies where to place the decimal
point relative to the rightmost digit. For example, the following code
declares a fixed type, CashAmount , to have a digit size of 10 and a
scale of 2:

typedef fixed<10, 2> CashAnount;

Given this typedef, any variable of the CashAmount type can contain
values of up to (+/-)99999999.99.

Constant fixed types

Fixed type and decimal fractions

IDL Data Types

I If scal e is a negative integer, the decimal point moves to the right by
the number of digits specified for scal e, thereby adding trailing zeros
to the fixed data type’s value. For example, the following code declares
a fixed type, bi g\um to have a digit size of 3 and a scale of - 4:

typedef fixed <3,-4> bi g\Num
bi g\Num nyBi gNum

If nyBi gNumhas a value of 123, its numeric value resolves to 1230000.
Definitions of this sort allow you to efficiently store numbers with
trailing zeros.

Constant fixed types can also be declared in IDL, where di gi t - si ze and
scal e are automatically calculated from the constant value. For example:

nodule CGrcle {
const fixed pi = 3.142857;
ik

This yields a fixed type with a digit size of 7, and a scale of 6.

Unlike IEEE floating-point values, the fi xed type is not subject to
representational errors. |IEEE floating point values are liable to inaccurately
represent decimal fractions unless the value is a fractional power of 2. For
example, the decimal value 0.1 cannot be represented exactly in IEEE
format. Over a series of computations with floating-point values, the
cumulative effect of this imprecision can eventually yield inaccurate results.

The fi xed type is especially useful in calculations that cannot tolerate any
imprecision, such as computations of monetary values.

145

CHAPTER 5 | IDL Interfaces

Complex Data Types

IDL complex data types IDL provide the following complex data types:

I Enums.

T Structs.

T Multi-dimensional fixed-sized arrays.
1

Sequences.

146

IDL Data Types

Enum Data Type

Overview

Enum IDL sample

Ordinal values of enum type

An enum (enumerated) type lets you assign identifiers to the members of a
set of values.

For example, you can modify the BankDeno IDL with the bal anceQur r ency
enum type:

nodul e BankDeno {
enum Qurrency {pound, dollar, yen, franc};

interface Account {
readonly attribute CashAmount bal ance;
readonly attribute Qurrency bal anceCurrency;
/...

I

In the preceding example, the bal anceCur r ency attribute in the Account
interface can take any one of the values pound, dol | ar, yen, orfranc.

The ordinal values of an enum type vary according to the language
implementation. The CORBA specification only guarantees that the ordinal
values of enumerated types monotonically increase from left to right. Thus,
in the previous example, dol | ar is greater than pound, yen is greater than
dol I ar, and so on. All enumerators are mapped to a 32-bit type.

147

CHAPTER 5 | IDL Interfaces

Struct Data Type

Overview

Struct IDL sample

148

A struct type lets you package a set of named members of various types.

In the following example, the Cust oner Det ai | s struct has several members.
The get Qust omer Det ai | s() operation returns a struct of the
Cust oner Det ai | s type, which contains customer data:

nodul e BankDeno{

struct QustonerDetails {
string custlD
string | nane;
string fnane;
short age;
/...

ik

interface Bank {
Qust orer Det ai | s get QustonerDetai | s
(in string custlD);
/...

I

Note: A struct type must include at least one member. Because a struct
provides a naming scope, member names must be unigue only within the
enclosing structure.

IDL Data Types

Union Data Type

Overview

Union declaration syntax

Discriminated unions

IDL union date sample

A union type lets you define a structure that can contain only one of several
alternative members at any given time. A union type saves space in
memory, because the amount of storage required for a union is the amount
necessary to store its largest member.

You declare a union type with the following syntax:

uni on nane switch (discrimnator) {
case | abel 1 : el enent - spec;
case | abel 2 : el erment - spec;
[-1
case | abel n : el enent - spec;
[default : el ement-spec;]

All IDL unions are discriminated. A discriminated union associates a constant
expression (I abel 1.1 abel n) with each member. The discriminator’s value
determines which of the members is active and stores the union’s value.

The following IDL defines a Dat e union type, which is discriminated by an
enum value:

enum dat eSt or age
{ nuneric, strMDDYY, strDDMWY };

struct DateStructure {
short Day;
short Mont h;
short Year;

%

union Date switch (dateStorage) {
case nuneric: long digital Fornat;
case strMVDDYY:
case strDDMWY: string stringFornat;
defaul t: DateStructure struct Fornat;

149

CHAPTER 5 | IDL Interfaces

Sample explanation

Rules for union types

150

Given the preceding IDL:

1 If the discriminator value for Dat e is numeric, the di gi t al For nat
member is active.

1 If the discriminator’s value is st r MMDDYY or st r DDMVYY, the
stringFor mat member is active.

I If neither of the preceding two conditions apply, the default
struct Format member is active.

The following rules apply to union types:

I Aunion’s discriminator can be i nt eger, char, bool ean or enum or an
alias of one of these types; all case label expressions must be
compatible with the relevant type.

I Because a union provides a naming scope, member names must be
unigue only within the enclosing union.

I Each union contains a pair of values: the discriminator value and the
active member.

I IDL unions allow multiple case labels for a single member. In the
previous example, the stri ngFor mat member is active when the
discriminator is either st r MVDDYY or st r DDMVYY.

I IDL unions can optionally contain a def aul t case label. The
corresponding member is active if the discriminator value does not
correspond to any other label.

IDL Data Types

Arrays

Overview

Array IDL sample

Array indexes

IDL supports multi-dimensional fixed-size arrays of any IDL data type, with
the following syntax (where di mensi on- spec must be a non-zero positive
constant integer expression):

[typedef] el ement-type array-nane [di nension-spec] ...

IDL does not allow open arrays. However, you can achieve equivalent
functionality with sequence types.

For example, the following piece of code defines a two-dimensional array of
bank accounts within a portfolio:

typedef Account portfolio[MAX_ACCT_TYPES] [MAX_ACCTS]

Note: For an array to be used as a parameter, an attribute, or a return
value, the array must be named by a typedef declaration. You can omit a
typedef declaration only for an array that is declared within a structure
definition.

Because of differences between implementation languages, IDL does not
specify the origin at which arrays are indexed. For example, C and C+ +
array indexes always start at O, while COBOL, PL/I, and Pascal use an origin
of 1. Consequently, clients and servers cannot exchange array indexes
unless they both agree on the origin of array indexes and make adjustments
as appropriate for their respective implementation languages. Usually, it is
easier to exchange the array element itself instead of its index.

151

CHAPTER 5 | IDL Interfaces

Sequence

Overview

Bounded and unbounded
sequences

Bounded and unbounded IDL
definitions

152

IDL supports sequences of any IDL data type with the following syntax:
[typedef] sequence < el enent-type[, nax-elenents] > sequence- nane

An IDL sequence is similar to a one-dimensional array of elements;
however, its length varies according to its actual number of elements, so it
uses memory more efficiently.

For a sequence to be used as a parameter, an attribute, or a return value,
the sequence must be named by a typedef declaration, to be used as a
parameter, an attribute, or a return value. You can omit a typedef
declaration only for a sequence that is declared within a structure definition.

A sequence’s element type can be of any type, including another sequence
type. This feature is often used to model trees.

The maximum length of a sequence can be fixed (bounded) or unfixed

(unbounded):

T Unbounded sequences can hold any number of elements, up to the
memory limits of your platform.

I Bounded sequences can hold any number of elements, up to the limit

specified by the bound.

The following code shows how to declare bounded and unbounded
sequences as members of an IDL struct:

struct LimtedAccounts {
string bankSort Code<10>;
sequence<Account, 50> accounts; // max sequence |length is 50

}s

struct UnlimtedAccounts {
string bankSort Code<10>;
sequence<Account > accounts; // no max sequence |ength

IDL Data Types

Pseudo Object Types

Overview

Defining

CORBA defines a set of pseudo-object types that ORB implementations use
when mapping IDL to a programming language. These object types have
interfaces defined in IDL; however, these object types do not have to follow
the normal IDL mapping rules for interfaces and they are not generally
available in your IDL specifications.

Note: The COBOL runtime and the Orbix E2A IDL compiler do not
support all pseudo object types.

You can use only the following pseudo-object types as attribute or operation
parameter types in an IDL specification:

QOCRBA: : NanedVal ue
CCRBA: : TypeCode

To use these types in an IDL specification, include the orb. i dl file in the
IDL file as follows:

#i ncl ude <orb.idl>
/...

This statement instructs the IDL compiler to allow the Nanedval ue and
TypeCode types.

153

CHAPTER 5 | IDL Interfaces

Defining Data Types

In this section

Using typedef

Typedef identifier IDL sample

154

This section contains the following subsections:

Constants page 155

Constant Expressions page 158

With t ypedef , you can define more meaningful or simpler names for existing
data types, regardless of whether those types are IDL-defined or
user-defined.

The following code defines the t ypedef identifier, St andar dAccount , so that
it can act as an alias for the Account type in later IDL definitions:

nmodul e BankDeno {
interface Account {
/...

}

typedef Account Standar dAccount;
I

Defining Data Types

155

CHAPTER 5 | IDL Interfaces

Wide character and string
constants

Boolean constants

Octet constants

156

Example 10: List of character constants (Sheet 2 of 2)

const char C11 = "\\'; /1 backsl ash

const char C12 = '\?'; /] question mark

const char CI3 = "'\"'"; /1 single quote

// String constants support the same escape sequences as G+
const string S1 = "Quote: \""; I/ string with doubl e quote
const string S2 = "hello world"; [/ sinple string

const string S3 = "hello" " world"; // concatenate

const string S4 = "\xA" "B'; /l two characters

/I (*\xA' and 'B),
// not the single character '\xAB

Wide character and string constants use C++ syntax. Use universal
character codes to represent arbitrary characters. For example:

const wchar C=LX,;
const wstring GREETING = L"Hell0";
const wchar QVEGA = L'\ u03a9' ;

const wstring QOMEGA STR = L"Qmega: \u3A9";

IDL files always use the ISO Latin-1 code set; they cannot use Unicode or
other extended character sets.

Boolean constants use the FALSE and TRUE keywords. Their use is
unnecessary, inasmuch as they create unnecessary aliases:

[/ There is no need to define bool ean constants:
const CONTRADI CTI ON = FALSE; /1 Pointless and conf usi ng
const TAUTOLOGY = TRUE /1l Pointless and conf usi ng

Octet constants are positive integers in the range 0-255.

const octet QL = 23;
const octet @ = 0xfO0;

Octet constants were added with CORBA 2.3; therefore, ORBs that are not
compliant with this specification might not support them.

Fixed-point constants

Enumeration constants

Defining Data Types

For fixed-point constants, you do not explicitly specify the digits and scale.
Instead, they are inferred from the initializer. The initializer must end in d or
D. For example:

/1 Fixed point constants take digits and scale fromthe
/] initializer:

const fixed vall = 3D, /] fixed<l, 0>
const fixed val 2 = 03. 14d; /1 fixed<3, 2>
const fixed val3 = -03000.00D;, // fixed<4, 0>
const fixed val4 = 0.03D /] fixed<3, 2>

The type of a fixed-point constant is determined after removing leading and
trailing zeros. The remaining digits are counted to determine the digits and
scale. The decimal point is optional.

Currently, there is no way to control the scale of a constant if it ends in
trailing zeros.

Enumeration constants must be initialized with the scoped or unscoped
name of an enumerator that is a member of the type of the enumeration. For
example:

enum Size { snall, nmedium large }

const Size DFL_SI ZE = medi um
const Size MAX SIZE = ::large;

Enumeration constants were added with CORBA 2.3; therefore, ORBs that
are not compliant with this specification might not support them.

157

CHAPTER 5 | IDL Interfaces

Constant Expressions

Overview IDL provides a number of arithmetic and bitwise operators. The arithmetic
operators have the usual meaning and apply to integral, floating-point, and
fixed-point types (except for % which requires integral operands). However,
these operators do not support mixed-mode arithmetic: you cannot, for
example, add an integral value to a floating-point value.

Arithmetic operators The following code contains several examples of arithmetic operators:

/1l You can use arithmetic expressions to define constants.
const long MN = -10;

const |ong MAX = 30;

const long DFLT = (MN + MAX) / 2;

// Can't use 2 here
const double TWCE Pl = 3.1415926 * 2.0;

/1l 5% di scount
const fixed D SCOUNT = 0. 05D,
const fixed PRICE = 99. 99D,

/]l Can't use 1 here
const fixed NET_ PRICE = PRCE * (1.0D - DI SOOUNT);

Evaluating expressions for Expressions are evaluated using the type promotion rules of C++. The

arithmetic operators result is coerced back into the target type. The behavior for overflow is
undefined, so do not rely on it. Fixed-point expressions are evaluated
internally with 31 bits of precision, and results are truncated to 15 digits.

158

Defining Data Types

Bitwise operators Bitwise operators only apply to integral types. The right-hand operand must
be in the range 0-63. The right-shift operator, >>, is guaranteed to insert
zeros on the left, regardless of whether the left-hand operand is signed or
unsigned.

// You can use bitw se operators to define constants.
const long ALL_ONES = -1; [Oxffffffff
const long LHWNASK = ALL_ONES << 16; [/ OxffffO0000
const |ong RHWMASK = ALL_ONES >> 16; /1 0x0000f f f f

IDL guarantees two’s complement binary representation of values.

Precedence The precedence for operators follows the rules for C++. You can override
the default precedence by adding parentheses.

159

CHAPTER 5 | IDL Interfaces

160

CHAPTER 6

|IDL-to-COBOL
Mapping

The CORBA Interface Definition Language (IDL) is used to

define interfaces that are exposed by servers in your network.
This chapter describes the standard IDL-to-COBOL mapping
rules and shows, by example, how each IDL type is represented

in COBOL.
In this chapter This chapter discusses the following topics:
Mapping for Identifier Names page 163
Mapping for Type Names page 165
Mapping for Basic Types page 166
Mapping for Boolean Type page 171
Mapping for Enum Type page 174
Mapping for Char Type page 177
Mapping for Octet Type page 179
Mapping for String Types page 181
Mapping for Wide String Types page 186

161

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Fixed Type page 187
Mapping for Struct Type page 191
Mapping for Union Type page 193
Mapping for Sequence Types page 198
Mapping for Array Type page 203
Mapping for the Any Type page 205
Mapping for User Exception Type page 207
Mapping for Typedefs page 210
Mapping for the Object Type page 213
Mapping for Constant Types page 215
Mapping for Operations page 218
Mapping for Attributes page 223
Mapping for Operations with a Void Return Type and No Parameters
page 224

Mapping for Inherited Interfaces page 226
Mapping for Multiple Interfaces page 233

Note: See “IDL Interfaces” on page 117 for more details of the IDL types
discussed in this chapter.

162

Mapping for Identifier Names

Mapping for Identifier Names

Overview

COBOL rules for identifiers

IDL-to-COBOL mapping rules
for identifiers

Example

This section describes how IDL identifier names are mapped to COBOL.

The following rules apply for COBOL identifiers:

They can be a maximum of 30 characters in length.
They can only consist of alphanumeric and hyphen characters.

The following rules are used to convert an IDL identifier to a COBOL
identifier:

Replace each underscore with a hyphen.
Remove any leading or trailing hyphens.

If an identifier clashes with a reserved COBOL word, prefix it with the
characters | DL- . For example, d maps to | DL- D, u maps to | DL- U, and

result maps to | DL- RESULT.

If an identifier is greater than 30 characters, truncate it to 30
characters, by using the first 25 characters followed by a hyphen
followed by a unique alphanumeric four-character suffix.

The example can be broken down as follows:

1.

Consider the following IDL:

nmodul e anodul e

{
interface exanpl e
{
attribute bool ean nyveryl ongattri bute;
bool ean nyveryl ongopnane(i n bool ean
nyver yl ongbool ean) ;
iH
b

163

CHAPTER 6 | IDL-to-COBOL Mapping

2. The preceding IDL maps to the following COBOL:

B R R R R R

* |Interface:
* anmodul e/ exanpl e

* *

Mapped nane:
anmodul e- exanpl e

*

* F

Inherits interfaces:

* (none)
LR R R SRS SR SRS S SRR S SRR S SRR RS R R R R SRR EEEEEEREEEEEEEEE S

EEEEE RS EESESES

* Attribute: nyveryl ongattri bute
* Mapped nane: nyverylongattribute
* Type: bool ean (read/wite)

E R

01 AMCDULE- EXAMPLE- MYVE- 5905- ARGS.

03 RESULT PI CTURE 9(01)
Bl NARY.

88 RESULT- FALSE VALLE 0.

88 RESULT- TRUE VALLE 1.
R RS S S S S S EEEEE SRR S SRS SR SRR SRR SRR SRR EEREEEEEEEEEEEEEEEE SRS
* Qperation: nyver yl ongopnane
* Mapped nane: nyver yl ongopnane
* Argurent s: <i n> bool ean nyveryl ongbool ean
* Returns: bool ean

* User Exceptions: none

kkkhkhhkhkhkhkhhhhhkkkhhhhkhkkhhhkkkkhhhhkkkhhhhkkkkhhhkhkkhhhhkkkkk k%

01 AMCDULE- EXAMPLE- MYVE- EAB7- ARGS.

03 MYVERYLONGBOCLEAN Pl CTURE 9(01)
Bl NARY.
88 MYVERYLONGBOOLEAN FALSE VALLE 0.
88 MYVERYLONGBOCLEAN TRUE VALLE 1.

03 RESULT Pl CTURE 9(01)
Bl NARY.
88 RESULT- FALSE VALLE 0.
88 RESULT- TRUE VALLE 1.

Note: See “-M Argument” on page 244 and “-O Argument” on page 250
for details of the arguments that you can use with the Orbix E2A IDL
compiler to create alternative COBOL identifiers.

164

Mapping for Type Names

Mapping for Type Names

Overview

IDL-to-COBOL mapping for type
names

This section describes how IDL type names are mapped to COBOL.

The current CORBA OMG COBOL mapping is based on the use of typedefs
for naming some IDL types. Typedefs are a non-standard extension to the
COBOL-85 standard. The IBM COBOL compiler for 0S/390 & VM version 2
release 1 does not support this extension.

The CORBA COBOL mapping standard includes a recent addition that
proposes the use of GCPY ... REPLAQ NGsyntax instead of typedefs for type
definitions. IONA currently uses the COBOL representation of each type
directly.

165

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Basic Types

Overview

IDL-to-COBOL mapping
for basic types

166

This section describes how basic IDL types are mapped to COBOL.

Table 18 shows the mapping rules for basic IDL types. Types not currently
supported by Orbix COBOL are denoted by italic text. The CORBA typedef
name is provided for reference purposes only; the COBOL representation is

used directly.

Table 18: Mapping for Basic IDL Types (Sheet 1 of 2)

IDL Type CORBA Typedef Name COBOL
Representation
short CORBA-short PIC S9(05) BINARY
long CORBA-long PIC S9(10) BINARY

unsigned short

CORBA-unsigned-short

PIC 9(05) BINARY

unsigned long

CORBA-unsigned-long

PIC 9(10) BINARY

float CORBA-float COMP-1

double CORBA-double COMP-2

char CORBA-char PIC X

boolean CORBA-boolean PIC 9(01) BINARY

octet CORBA-octet PIC X

enum CORBA-enum PIC 9(10) BINARY

fixed<d,s> Fixed<d,s> PIC S9(d-s)v(s)
PACKED-DECIMAL

fixed<d,-s> Fixed<d,-s> PIC S9(d)P(s)

PACKED-DECIMAL

Mapping for Basic Types

Table 18: Mapping for Basic IDL Types (Sheet 2 of 2)

IDL Type CORBA Typedef Name COBOL
Representation
any CORBA-any Refer to “Mapping
for the Any Type”
on page 205.
long long CORBA-long-long PIC S9(18) BINARY
unsigned long CORBA-unsigned-long-long PIC 9(18) BINARY
long
wchar CORBA-wchar PIC G
Example The example can be broken down as follows:

1. Consider the following IDL:

const float ny outer_float = 19.76;
const doubl e ny_out er _doubl e = 123456. 789;

interface exanpl e

{
const short ny_short = 24;
const long ny_long = 9999;
typedef fixed<5,2> a fixed 5 2;
attribute short nyshort;
attribute | ong nyl ong;
attribute unsigned short nyushort;
attribute unsigned | ong nyul ong;
attribute float nyfloat;
attribute doubl e nydoubl e;
attribute char nychar;
attribute octet nyoctet;
attribute a fixed 5 2 nyfixed 5 2;
attribute | ong | ong nyl ongl ong;
attribute unsigned | ong | ong ul ongl ong;

167

CHAPTER 6 | IDL-to-COBOL Mapping

2. The preceding IDL maps to the following COBOL:

Example 11: COBOL Example for Basic Types (Sheet 1 of 3)

EEEEE SRR EE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEES

* Constants in root scope:
EEEEE RS EEEE RS EEE RS SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

01 G.CBAL- EXAMLA- GONSTS.

03 M- QUTER- FLOAT COMPUTATI ONAL- 1
VALLE 1. 976e+01.
03 MY- QUTER- DOUBLE GOVPUTATI ONAL- 2

VALUE 1. 23456789e+05.
R R RS SRS SRS E S SRR SRS SRR SRS RS R SRR RS EEEEEEE S
* I nterface:
* exanpl e

* Mapped narre:
* exanpl e

* |Inherits interfaces:

* (none)
EEEEE RS EEEE RS SRR EEES

L o o X

* Attribute: nyshort
* Mapped nane: nyshort
* Type: short (read/wite)

hhkkhhhhkhkhhhhhhkhkhhhhhkhkhhhhhkkkhhhhkhkkhhhkkkkhhhhkkkhhhkkkkhkk

01 EXAVPLE- MYSHCORT- ARGS.

03 RESULT Pl CTURE S9(05)
Bl NARY.
EEEEE RS EEEE RS EEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEES
* Attribute: nyl ong
* Mapped narme: nyl ong
* Type: long (read/wite)

e

01 EXAVPLE- MYLONG ARGS.

03 RESULT Pl CTURE S9(10)
Bl NARY.
RS R E RS EE SR EEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEESES]
* Attribute: nyushor t
* Mapped name: nyushort
* Type: unsi gned short (read/wite)

EEEEE RS EEEEEEEEEEEEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

01 EXAVPLE- MYUSHORT- ARGS.
03 RESULT Pl CTURE 9(05)
Bl NARY.

168

Mapping for Basic Types

Example 11:COBOL Example for Basic Types (Sheet 2 of 3)

B R R

* Attribute: nyul ong
* Mapped name: nyul ong
* Type: unsi gned | ong (read/ wite)
LR EEE SRR E RS RS EEE]
01 EXAWPLE- WULONG ARGS.

03 RESULT Pl CTURE 9(10)

Bl NARY.

RS RS E R RS SRS SRR R SRR E R R R SR EEREEEREEEEEEEEEEEEEEEEEEEEEES]
* Attribute: nyf | oat
* Mapped nare: nyfl oat
* Type: float (read/wite)

LRSS R RS S S S SRS S SRR S SRS EE RS E R R R EEEEEEEEEEEEEEEES

01 EXAVPLE- MYFLQAT- ARGS.

03 RESULT COMPUTATI ONAL- 1.
LRSS SR RS S S S S SRR RS S SRS EE R SRR R R EEREEEEEEEEEEEEEE]
* Attribute: nydoubl e
* Mapped nanme: nydoubl e
* Type: doubl e (read/wite)

LR EEE RS R EE TSRS RS EEE]

01 EXAVPLE- MYDOUBLE- ARGS.

03 RESULT COMPUTATI CNAL- 2.
LR EEE R R EE R RS RS EEE]
* Attribute: nychar
* Mapped name: nychar
* Type: char (read/wite)

khkkhkkhkhkhkhhhhkhkhhhhhkkhkhhhhhkhkhhhhhhkhkkhhhhkhkkhhhhkkkhhhhkkkkhhkx

01 EXAWPLE- \YCHAR- ARGS.

03 RESULT Pl CTURE X(01).
RS RS S S S S S SRS SRS SR RS SRS SRS SRR SRR EEEEEEEEEEEEEEEEEEEEEEEESE]
* Attribute: nyoct et
* Mapped name: nyoct et
* Type: octet (read/wite)

LRSS R RS RS SRR S SRR RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

01 EXAWPLE- MYCCTET- ARGS.

03 RESULT Pl CTURE X(01) .
EEEE SRS E RS E SRS EEES
* Attribute: nyfixed_5_2
* Mapped name: nyfixed 5 2
* Type: exanpl e/a_fixed 5 2 (read/wite)

LR R R R R R RS EEE]

01 EXAWPLE- MYFI XED- 5- 2- ARGS.

03 RESULT PI CTURE S9(3) VO(2)

PACKED- DEQ IVAL.

169

CHAPTER 6 | IDL-to-COBOL Mapping

Example 11: COBOL Example for Basic Types (Sheet 3 of 3)

Kk khhhhkkhhhhhkkkhhhhkkkkhhhhkkhkhhhhhkhkkhhhhkkkkhhhhkkkhhhhkkkkhkk

* Attribute: nyl ongl ong
* Mapped name: nyl ongl ong
* Type: long long (read/write)

EEEEE RS EES

01 EXAVPLE- MYLONGLONG ARGS.

03 RESULT Pl CTURE S9(18)
Bl NARY.
RS R R RS SRS E RS SRR ERE R EREEEEEEEREREEEEEEEEEEEEEEEEEEEEEESES]
* Attribute: ul ongl ong
* Mapped name: ul ongl ong
* Type: unsi gned long | ong (read/wite)

EEEEEE RS S SR SRS S SRR S SRR RS R SRR RS SRR EEE SRR EEEEEEEE S

01 EXAMPLE- ULONGLONG ARGS.
03 RESULT Pl CTURE 9(18)
Bl NARY.

EEEEEE SRR RS EEES

* Constants in exanpl e:
EEEEEE R RS SR SRR SRS SRR RS SRR SRR R RS EEEEEEEEEEEEEEEEE S

01 EXAVPLE- GONSTS.

03 MY- SHCRT PI CTURE S9(05)
Bl NARY VALUE 24.
03 M- LONG PI CTURE S9(10)

Bl NARY VALUE 9999.

170

Mapping for Boolean Type

Mapping for Boolean Type

Overview This section describes how booleans are mapped to COBOL.
IDL-to-COBOL mapping An IDL boolean type maps to a COBOL PI C 9(01) integer value and has
for booleans two COBOL conditions defined, as follows:

T Alabel idl-identifier-FALSE with a Ovalue.
T Alabelidi-identifier-TRUE with a 1 value.

Note: The IBM COBOL compiler for 0S/390 & VM does not currently
support the non-COBOL85 >>CCONSTANT construct. This is specified for the
mapping of constant boolean values. Responsibility is passed to the Orbix
E2A IDL compiler to propagate constant values. In this case, the following
mapping approach that uses Level 88 items has been chosen:

Example The example can be broken down as follows:
1. Consider the following IDL, which is contained in an IDL member
called EXAML:
[/l 1D

interface exanpl e {
attribute bool ean full;
bool ean nyop(in bool ean nybool ean) ;

171

CHAPTER 6 | IDL-to-COBOL Mapping

172

2.

Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following COBOL in the EXAML copybook:

E O

* Attribute: full
* Mapped name: full
* Type: bool ean (read/wite)

R R R RS EEES]

01 EXAVPLE- FULL- ARGS.
03 RESULT Pl CTURE 9(01) Bl NARY.
88 RESULT- FALSE VALLE 0.

88 RESULT- TRUE VALUE 1.

khkkhkhhhhkhkhkhhhhkkhkhhhhhkhkhhhhhkhkhhhhhhkhkkkhhhhkhkkkhhhkhkkkhhhhkkk*

* Qperation: nyop

* Mapped narre: nyop

* Argunents: <i n> bool ean nybool ean
* Returns: bool ean

* User Exceptions: none
RS SRR RS RS E SRR SRR R R EREEEEEEEEREEEEEEEEEEEEEEEEEEEEEESESS
01 EXAVPLE- MYCP- ARGS.

03 MYBOCLEAN PI CTURE 9(01) BI NARY.

88 MYBOCLEAN- FALSE VALLE 0.
88 MYBOCLEAN TRUE VALLE 1.
03 RESULT Pl CTURE 9(01) Bl NARY.
88 RESULT- FALSE VALLE 0.
88 RESULT- TRUE VALLE 1.
01 EXAVPLE- CPERATI CN Pl CTURE X(26) .
88 EXAWPLE- GET- FULL VALUE
" _get_full:lDL: exanpl e: 1. 0".
88 EXAWVPLE- SET- FULL VALUE
" set_full:lDL:exanpl e: 1.0".
88 EXAMPLE- \YCP VALUE

“nyop: | DL: exanpl e: 1. 0".
01 EXAMPLE- CPERATI ON- LENGTH Pl CTURE 9(09) Bl NARY

VALUE 26.

Mapping for Boolean Type

3. The preceding code can be used as follows:

| F RESULT- TRUE CF RESULT CF EXAWPLE- FULL- ARGS THEN
SET EXAWPLE- SET- FULL TO TRUE
ELSE
SET EXAWPLE- GET- FULL TO TRUE
END- | F
CALL "CRBEXEC' USI NG SERVER- CBJ
EXAMVPLE- CPERATI ON
EXAVPLE- FULL- ARGS
EXAML- USER- EXCEPTI ONS

173

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Enum Type

Overview

IDL-to-COBOL mapping
for enums

Example

174

This section describes how enums are mapped to COBOL.

An IDL enum type maps to a COBOL PI C 9(10) BI NARY type. The COBOL
mapping for an enum is an unsigned integer capable of representing 2**32
enumerations (that is, 2321 gnumerations). Because IDL does not allow you
to set ordinal values for enums, each identifier in a mapped enum has a
COBOL condition defined with its own appropriate integer value, based on
the rule that integer values are incrementing and start at 0. Each identifier is
a level 88 entry.

The example can be broken down as follows:

1. Consider the following IDL, which is contained in an IDL member
called EXAMR:

/1 1DL

interface exanple {
enumtenp {cold, warm hot };
attribute tenp attri;
tenp nyop(in tenp nyenun);

Mapping for Enum Type

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following COBOL in the EXAMR copybook:

RS RS E RS SRR E R SRS RS EE RS EEEREEEEEEEEEEEEEEREEEEEEEEESEES]
* Attribute: attrl

* Mapped name: attrl

* Type: tenp (read/wite)

EEEEE SRR RS SRS EEES

01 EXAVPLE- ATTRL- ARGS.

03 RESULT Pl CTURE 9(10) Bl NARY.

88 COLD VALLE 0.
88 WARM VALLE 1.
88 HOT VALLE 2.

EEEEE RS EEE RS SRS EEES

* (peration: nyop

* Mapped nane: nyop

* Argument s: <i n> tenp nyenum

* Returns: tenp

* User Exceptions: none

EEEEEEEEEE RS EEE T EEES

01 EXAVPLE- MYCP- ARGS.

03 MYENUM Pl CTURE 9(10) Bl NARY.
88 Q0D VALLE 0.
88 WARM VALLE 1.
88 HOT VALLE 2.

03 RESULT Pl CTURE 9(10) Bl NARY.
88 COLD VALLE 0.
88 WARM VALLE 1.
88 HOT VALLE 2.

175

CHAPTER 6 | IDL-to-COBOL Mapping

3. The preceding code can be used as follows:

EVALUATE TRUE
WHEN OCLD CF EXAMWPLE- ATTRI- ARGS

WHEN WARM CF EXAVPLE- ATTRL- ARGS
WHEN HOT OF EXAMPLE- ATTRI1- ARGS

END- EVALUATE

176

Mapping for Char Type

Mapping for Char Type

Overview This section describes how char types are mapped to COBOL.
IDL-to-COBOL mapping Char data values that are passed between machines with different character
for char types encoding methods (for example, ASCIl, EBCDIC, and so on) are translated
by the ORB.
Example The example can be broken down as follows:
1. Consider the following IDL, which is contained in an IDL member
called EXAMB:
[l 1DL

interface exanpl e {
attribute char achar;
char nyop(in char nychar);

177

CHAPTER 6 | IDL-to-COBOL Mapping

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following COBOL in the EXAMB copybook:

E O

* Attribute: achar
* Mapped name: achar
* Type: char (read/wite)

EEEE SRR E RS RS EEESES

01 EXAVPLE- ACHAR ARGS.

03 RESULT Pl CTURE X(01).
EEEEE RS EEESESES
* (peration: nyop
* Mapped nane: nyop
* Argunents: <i n> char nychar
* Returns: char

* User Exceptions: none
EE SRS EEEEEEEEE S SRR R R SRR SRR SRR EREE SRR EREEEEEEEES]
01 EXAVPLE- MYCP- ARGS.
03 MYCHAR PI CTURE X(01).
03 RESULT PI CTURE X(01).

178

Mapping for Octet Type

Mapping for Octet Type

Overview This section describes how octet types are mapped to COBOL.
IDL-to-COBOL mapping The octet type refers to binary character data. The ORB does not translate
for octet types any octet data, even if the remote system has a different character set than

the local system (for example ASCII and EBCDIC). You should take special
care in selecting the appropriate IDL type when representing text data (that

179

CHAPTER 6 | IDL-to-COBOL Mapping

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following COBOL in the EXAMA copybook:

E O

* Attribute: aoct et
* Mapped name: aoct et
* Type: octet (read/wite)

EEEE SRR E RS RS EEESES

01 EXAVPLE- ACCTET- ARGS.

03 RESULT Pl CTURE X(01).
EEEEE RS EEESESES
* (peration: nyop
* Mapped nane: nyop
* Argunents: <i n> char nyoct et
* Returns: oct et

* User Exceptions: none
EEEE SRR E SRR EEESEES
01 EXAVPLE- MYCP- ARGS.
03 MYCCTET Pl CTURE X(01).
03 RESULT PI CTURE X(01) .

180

Mapping for String Types

Mapping for String Types

Overview

Bounded and unbounded
strings

Incoming bounded strings

This section describes how string types are mapped to COBOL. First, it
describes the various string types that are available.

Strings can be bounded or unbounded. Bounded strings are of a specified
size, while unbounded strings have no specified size. For example:

/11DL
string<8> a_bounded_string
string an_unbounded_string

Bounded and unbounded strings are represented differently in COBOL.

Incoming strings are passed as | Nor | NOUT values by the COAGET function
into the COBOL operation parameter buffer at the start of a COBOL
operation.

An incoming bounded string is represented by a COBOL PI C X(n) data item,
where n is the bounded length of the string. For example:

1. Consider the following IDL:

interface exanpl e {
typedef string<10> boundedstr;
attri bute boundedstr aboundedstr;
boundedstr nyop(in boundedstr nyboundedstr);

b

181

CHAPTER 6 | IDL-to-COBOL Mapping

2. The preceding IDL maps to the following COBOL:

B R R R R R

* Attribute: aboundedst r
* Mapped name: aboundedst r
* Type: exanpl e/ boundedstr (read/ wite)

EEEEEEE RS EEE R EEESESS

01 EXAVPLE- ABOUNDEDSTR- ARGS.

03 RESULT Pl CTURE X(10).
EEEEEEEE RS E RS EEESESES
* Qperation: nyop
* Mapped narre: nyop
* Argunents: <i n> exanpl e/ boundedst r nyboundedst r
* Returns: exanpl e/ boundedst r

* User Exceptions: none
EE SR E R SRS SR E S EE S SRR R R SRR SRR SRR SRR EEEREREEEEEEES]
01 EXAVPLE- MYCP- ARGS.
03 MYBOUNDEDSTR Pl CTURE X(10).
03 RESWLT Pl CTURE X(10).

E R R

If the string that is passed is too big for the buffer, the string is truncated. If
the string is not big enough to fill the buffer, the remainder of the COBOL
string is filled with spaces.

Outgoing bounded strings Outgoing strings are copied as | NQUT, QUT, or RESULT values by the coapuTr
function from the complete COBOL operation parameter buffer that is
passed to it at the end of a COBOL operation.

An outgoing bounded string has trailing spaces removed, and all characters
up to the bounded length (or the first null) are passed via CoAPUT. If a null is
encountered before the bounded length, only those characters preceding the
null are passed. The remaining characters are not passed.

182

Incoming unbounded strings

Mapping for String Types

Incoming strings are passed as | Nor | NOUT values by the COAGET function
into the COBOL operation parameter buffer at the start of a COBOL
operation.

An incoming unbounded string is represented as a USAGE | S PO NTER data
item. For example:
1. Consider the following IDL:
interface exanpl e {
typedef string unboundedstr;
attri bute unboundedstr aunboundedstr;
unboundedstr nyop(i n unboundedstr nyunboundedstr);

IE
2. The preceding IDL maps to the following COBOL:

EEEEEE RS SR SRS S S E R E RS SRR RS S SRR SRR R SRR EEEEEEEEEEEEEEE S

* Attribute: aunboundedst r
* Mapped name: aunboundedstr
* Type: exanpl e/ unboundedstr (read/wite)

EEEEE SRR E R SRR EEES

01 EXAVPLE- AUNBOUNDEDSTR- ARGS.

03 RESULT PA NTER VALUE NULL.
EEEEE R EEE RS RS EES
* (peration: nyop
* Mapped nane: nyop
* Argurrent s: <i n> exanpl e/ unboundedst r munyboundedst r
* Returns: exanpl e/ unboundedst r

* User Exceptions: none
R E R SRS E S SRS S SRR SRR RS EREEEEE RS EEEEEEEEEEEEEEEEEESS
01 EXAWPLE- MYCP- ARGS.
03 MUNYBOUNDEDSTR PA NTER VALUE NULL.
03 RESULT PQA NTER VALUE NULL.

183

CHAPTER 6 | IDL-to-COBOL Mapping

Outgoing unbounded strings

184

3. A pointer is supplied which refers to an area of memory containing the

string data. This string is not directly accessible. You must call the
STRGET function to copy the data into a COBOL PI C X(n) structure. For
example:

* This is the supplied COBCL unbounded string pointer
01 NAME USAGE | S PO NTER
* This is the COBCL representation of the string

01 SUPPLI ER- NAME Pl CTURE X(64) .
01 SUPPLI ER- NAME- LEN Pl CTURE 9(10) BI NARY VALUE 64.

* This STRCGET call copies the characters in the NAME
* to the SUPPLI ER- NAME

CALL " STRGET" USI NG NAVE
SUPPLI ER- NAME- LEN
SUPPLI ER- NAMVE.

In the preceding example, the number of characters copied depends on the
value specified for SUPPLI ER- NAME- LEN. This must be a valid positive integer
(that is, greater than zero); otherwise, a runtime error occurs. If the value
specified for SUPPLI ER- NAME is shorter than that for SUPPLI ER- NAME- LEN, the
string is still copied to SUPPLI ER NAME, but it obviously cannot contain the
complete string.

Outgoing strings are copied as | NOUT, QUT, or RESULT values by the CoaPUT
function from the complete COBOL operation parameter buffer that is
passed to it at the end of a COBOL operation.

Mapping for String Types

A valid outgoing unbounded string must be supplied by the implementation
of an operation. This can be either a pointer that was obtained by an I Nor
| NQUT parameter, or a string constructed by using the STRSET function. For
example:

* This is the COBQL representation of the string containing a
* value that we want to pass back to the client using COAPUT

* via an unbounded poi nter string. */
01 NOTES Pl CTURE X(160) .
01 NOTES- LEN Pl CTURE 9(10) Bl NARY

VALLE 160.

* This is the unbounded pointer string
01 QUST- NOTES USACE | S PA NTER

* This STRSET call creates an unbounded string call ed QUST- NOTES
* to which it copies NOTES-LEN characters from character string
* NOTES

CALL " STRSET" USI NG QUST- NOTES
NOTES- LEN
NOTES.

Trailing spaces are removed from the constructed string. If trailing spaces
are required, you can use the STRSETP function, with the same argument
signature, to copy the specified number of characters, including trailing
spaces.

185

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Wide String Types

Overview This section describes how wide string types are mapped to COBOL.

IDL-to-COBOL mapping The mapping for the wst ri ng type is similar to the mapping for strings, but

for wide strings it requires DBCS support from the IBM COBOL compiler for 0S/390 & VM.
The current IBM COBOL compiler for 0S/390 & VM does have DBCS
support.

A PI CTURE G (instead of a PI CTURE X) data item represents the COBOL data
item. Instead of calling STRGET and STRSET to access unbounded strings, the
auxiliary functions WSTRGET and WBTRSET should be used. The argument
signatures for these functions are equivalent to their string counterparts.

186

Mapping for Fixed Type

Mapping for Fixed Type

Overview

IDL-to-COBOL mapping
for fixed types

The fixed-point decimal
data type

Examples of the fixed-point

decimal data type

Explanation of the fixed-point
decimal data type

This section describes how fixed types are mapped to COBOL.

The IDL fixed type maps directly to COBOL packed decimal data with the
appropriate number of digits and decimal places (if any).

Note: All fixed types must be declared in IDL with t ypedef .

The fixed-point decimal data type is used to express in exact terms numeric
values that consist of both an integer and a fixed-length decimal fraction
part. The fixed-point decimal data type has the format <d, s>.

You might use it to represent a monetary value in dollars. For example:

typedef fixed<9,2> net_worth; // up to $9, 999, 999.99, accurate to
/1 one cent.

typedef fixed<9, 4> exchange rate; // accurate to 1/10000 unit.

typedef fixed<9,0> annual _revenue; // in mllions

typedef fixed<3,6> wong; // this is invalid.

The format of the fixed-point decimal data type can be explained as follows:

1. The first number within the angle brackets is the total number of digits
of precision.

2. The second number is the scale (that is, the position of the decimal
point relative to the digits).
A positive scale represents a fractional quantity with that number of
digits after the decimal point. A zero scale represents an integral value.
A negative scale is allowed, and it denotes a number with units in
positive powers of ten (that is, hundreds, millions, and so on).

187

CHAPTER 6 | IDL-to-COBOL Mapping

Example of IDL-to-COBOL
mapping for fixed types

188

The example can be broken down as follows:
1. Consider the following IDL:

//1DL

interface exanpl e

{
typedef fixed<10, 0> type_revenue;
attribute type_revenue revenue;
typedef fixed<6, 4> type_preci se;
attribute type_precise precise;
type_preci se nyop(in type_revenue nyfixed);
typedef fixed<6,-4> type nillions;
attribute type mllions mllions;

Ji:
2. The preceding IDL maps to the following COBOL:

Example 12: COBOL Example for Fixed Type (Sheet 1 of 2)

EEEEEE RS E R SRS SRS SRR RS SRR EEE R R EEEEEEEEEEEEEEEEE S

* Attribute: revenue
* Mapped nane: revenue
* Type: exanpl e/ type_revenue (read/ wite)

LEEEE RS EEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEESS

01 EXAVPLE- REVENUE- ARGS.
03 RESULT Pl CTURE S9(10)
PACKED- DECI MAL.

EE e

* Attribute: pr eci se
* Mapped nane: precise
* Type: exanpl e/ type_preci se (read/wite)

EEEEE RS SRR RS SRS SRR SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

01 EXAMPLE- PREQ SE- ARGS,
03 RESULT PI CTURE S9(2) VO(4)
PACKED- DECI MAL.

EEEEE RS EEEE R SRR RS EEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEES

* Attribute: mllions
* Mapped narme: mllions
* Type: exanpl e/type_mllions (read/wite)

e

01 EXAMPLE-M LLI ONS- ARGS.
03 RESULT Pl CTURE S9(6) P(4)
PACKED- DECI MAL.

EEEE RS SRR RS SRR RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

* Qperation: nyop

Mapping for Fixed Type

Example 12: COBOL Example for Fixed Type (Sheet 2 of 2)

* Mapped narre: nyop
* Argunents: <i n> exanpl e/ type_revenue nyfixed
* Returns: exanpl e/ t ype_pr eci se

* User Exceptions: none

LR EEE SRR E RS RS EEE]

01 EXAWPLE- MYCP- ARGS.

03 MYFI XED PI CTURE S9(10)
PACKED- DECI MAL.
03 RESWLT Pl CTURE S9(2) VO(4)

PACKED- DEGI MAL.

Limitations in size of COBOL The IBM COBOL compiler for 0S/390 & VM version 2 release 1 limits

numeric data items numeric data items to a maximum of 18 digits, whereas the IDL fixed type
specifies support for up to 31 digits. If the IDL definition specifies more than
18 digits, the generated data item is restricted to 18 digits. Truncation of
the excess most-significant digits occurs when the item is passed to COBOL.
Passing data from COBOL to a fixed type with greater than 18 digits results
in zero-filling of the excess most-significant digits.

For example, consider the following IDL:

/1 1DL
interface exanpl e

{
typedef fixed<25,0> lots_of _digits;
attribute lots_of _digits |arge_val ue;

typedef fixed<25,8> |ots_of _digits_and_prec;
attribute |ots_of _digits_and_prec |arge_val ue_prec;

189

CHAPTER 6 | IDL-to-COBOL Mapping

190

The preceding IDL cannot be represented in COBOL, because COBOL has a
restricted maximum of 18 digits. The Orbix E2A IDL compiler issues a
warning message and truncates to provide the following mapping:

B R R R R

* Attribute: | arge_val ue
* Mapped nare: | arge_val ue
* Type: exanpl e/l ots_of _digits (read/wite)

EEEE SRR E RS SRR EEESES

01 EXAVPLE- LARGE- VALUE- ARGS.
03 RESULT Pl CTURE S9(18)
PACKED- DECI MAL.

E R

* Attribute: | arge_val ue_prec
* Mapped nane: | arge_val ue_prec
* Type: exanpl e/l ots_of _digits_and_prec (read/wite)

EEEEEE R SRS SR SRS S SRS E SRR S E R SRR R RS EEEEEEEEEEEEEEEEE S

01 EXAMPLE- LARGE- VALUE- PREC- ARGS,
03 RESULT Pl CTURE S9(17) V(1)
PACKED- DECI MAL.

Mapping for Struct Type

Mapping for Struct Type

Overview This section describes how struct types are mapped to COBOL.

IDL-to-COBOL mapping An IDL struct definition maps directly to COBOL group items.
for struct types

Example of IDL-to-COBOL The example can be broken down as follows:
mapping for struct types 1. Consider the following IDL:

/1 1DL
interface exanpl e
{
struct a structure
{
| ong menber 1;
short nmenber 2;
bool ean nenber 3;
st ri ng<10> nenber 4;
IE
typedef a structure type_struct;
attribute type struct astruct;
type_struct nyop(in type_struct nystruct);

191

CHAPTER 6 | IDL-to-COBOL Mapping

192

The preceding IDL maps to the following COBOL:

Kk khhhhkhkkhkhhhhkkkkhhhkkkhhhhkkhkkhhhhkhkkhhhhkhkkkhhhhkkkhhhhkkk k%

* Attribute: ast r uct
* Mapped name: ast ruct
* Type: exanpl e/ type_struct (read/wite)

R R RS EEE]

01 EXAVPLE- ASTRUCT- ARGS.

03 RESULT.
05 MEMBERL Pl CTURE S9(10) Bl NARY.
05 MEMBER2 Pl CTURE S9(05) Bl NARY.
05 MEMBER3 PI CTURE 9(01) BI NARY.
88 MEMBER3- FALSE VALUE 0.
88 MEMBER3- TRUE VALLE 1.
05 MEMBER4 Pl CTURE X(10).
EEEE SRR EESEES
* Qperati on: nyop
* Mapped narre: nyop
* Argunent s: <i n> exanpl e/ type_struct nystruct
* Returns: exanpl e/ t ype_st ruct

* User Exceptions: none

EEEEEE R E RS EEE R EESES

01 EXAWPLE- MYCP- ARGS.

03 MYSTRUCT.
05 MEMBERL Pl CTURE S9(10) Bl NARY.
05 MEMBER2 Pl CTURE S9(05) Bl NARY.
05 MEMBER3 Pl CTURE 9(01) Bl NARY.
88 MEMBER3- FALSE VALUE 0.
88 MEMBER3- TRUE VALLE 1.
05 MEMBER4 Pl CTURE X(10).
03 RESULT.
05 MEMBERL Pl CTURE S9(10) Bl NARY.
05 MEMBER2 Pl CTURE S9(05) Bl NARY.
05 MEMBER3

88 MEMBER3- FALSE
88 MEMBER3- TRUE
05 MEMBER4

Pl CTURE 9(01) Bl NARY.
VALLE 0.
VALLE 1.
Pl CTURE X(10).

Mapping for Union Type

Mapping for Union Type

Overview This section describes how union types are mapped to COBOL.
IDL-to-COBOL mapping An IDL union definition maps directly to COBOL group items with the
for union types REDEFI NES clause.

Simple example of IDL-to-COBOL The example can be broken down as follows:
mapping for union types 1. Consider the following IDL:

/1 1DL
interface exanpl e
{
uni on a_uni on sw tch(l ong)
{
case 1: char case_1;
case 3: long case_3;
defaul t: string case_def;
b
typedef a_ union type_union;
attribute type_union aunion;
type_uni on nyop(in type_uni on nmyunion);

b
2. The preceding IDL maps to the following COBOL:

Example 13: COBOL Example for Union Type (Sheet 1 of 2)

LRSS R SRS S SRR S EEEE RS SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

* Attribute: auni on
* Mapped nanme: auni on
* Type: exanpl e/ type_union (read/ wite)

LR EE SRR E R R R RS EEE]

01 EXAVPLE- AUN ON- ARGS.

03 RESWLT.
05 D Pl CTURE S9(10) Bl NARY.
05 U
07 FILLER Pl CTURE X(08)

VALUE LOW VALUES.
05 FI LLER REDEFI NES U.

193

CHAPTER 6 | IDL-to-COBOL Mapping

194

Example 13: COBOL Example for Union Type (Sheet 2 of 2)

07 CASE-1

05 FI LLER REDEFI NES U.
07 CASE-3

05 FI LLER REDEFI NES U.

Pl CTURE X(01).
Pl CTURE S9(10) Bl NARY.

PQ NTER

Khkkhhkhhhkhkhhhhhkhkhkhhhhkhkhkkhhhkkkhhhhhkhkkhhhkkkkhhhhkhkkkhhhkkkkhkk

07 CASE- DEF
* Qperation: nyop
* Mapped nare: nyop

* Argunents:
* Returns:

* User Exceptions: none

e

01 EXAVPLE- MYCP- ARGS.

03

03

MYUN ONL
05 D
05 U
07 FILLER

05 FI LLER REDEFI NES U.
07 CASE-1

05 FI LLER REDEFI NES U.
07 CASE-3

05 FI LLER REDEFI NES U.
07 CASE- DEF

RESULT.

05 D

05 U
07 FILLER

05 FI LLER REDEFI NES U.
07 CASE-1

05 FI LLER REDEFI NES U.
07 CASE-3

05 FI LLER REDEFI NES U.
07 CASE- DEF

<i n> exanpl e/ t ype_uni on nyuni on
exanpl e/ t ype_uni on

Pl CTURE S9(10) Bl NARY.

Pl CTURE X(08)
VALUE LON VALUES.

Pl CTURE X(01).

Pl CTURE S9(10) Bl NARY.
PQ NTER

Pl CTURE S9(10) Bl NARY.

Pl CTURE X(08)
VALUE LON VALUES.

Pl CTURE X(01).
Pl CTURE S9(10) Bl NARY.

PA NTER

Mapping for Union Type

COBOL rules for mapped IDL The following rules apply in COBOL for union types mapped from IDL:
unions 1. The union discriminator in the group item is always referred to as D.
2. The union items are contained within the group item referred to as U.

3. Reference to union elements is made through the EVALUATE statement
to test the discriminator.

Note: If Dand Uare used as IDL identifiers, they are treated as reserved
words. This means that they are prefixed with I DL- in the generated
COBOL (for example, the IDL identifier d maps to the COBOL identifier

| DL- D).

Example of COBOL rules for The following code shows the COBOL rules for mapped IDL unions in effect:
mapped IDL unions

EVALUATE D OF RESULT COF EXAMPLE- AUN O\ ARGS

WHEN 1
DI SPLAY "its a character value =" CASE-1 OF U OF
EXAMPLE- AN O\ ARGS

WEN 3

Dl SPLAY "its a long value = " CASE-3 CF U OF
EXAMPLE- ANl ON- ARGS
WHEN OTHER

Dl SPLAY "its an unbounded string "
* use strget to retrieve val ue
END- EVALUATE

195

CHAPTER 6 | IDL-to-COBOL Mapping

More complex example The following provides a more complex example of the IDL-to-COBOL
mapping rules for union types. The example can be broken down as follows:

1. Consider the following IDL:

interface exanpl e

{
uni on a_uni on swi t ch(l ong)
{
case 1: char case_1;
case 3: long case_3;
default: string case_def;
b
typedef a_union type_union;
uni on a_nest _uni on sw tch(char)
{
case 'a': char case_a;
case 'b': long case_b;
case 'c': type_union case c;
default: string case_other;
b
typedef a _nest_uni on type_nest _union;
attribute type _nest_uni on anestunion;
h

196

Mapping for Union Type

2. The preceding IDL maps to the following COBOL:

Kk kkhhhkkhkhhhhkkkkhhhhkhkkhhhhkhkkkhhhhkkkhhhkhkkkkhhhkkkkhhkkkkkkk

* Attribute: anest uni on
* Mapped name: anest uni on
* Type: exanpl e/ type_nest _union (read/ wite)

EEEEE RS EEE RS SRR EEES

01 EXAMVPLE- ANESTUN ON- ARGS.

03 RESULT.
05 D Pl CTURE X(01) .
05 U
07 FILLER Pl CTURE X(16)

VALUE LOW VALUES.
05 FI LLER REDEFI NES U.

07 CASE-A Pl CTURE X(01).
05 FI LLER REDEFI NES U
07 CASE-B Pl CTURE S9(10) Bl NARY.
05 FI LLER REDEFI NES U.
07 CASE-C.
09 D1 Pl CTURE S9(10) Bl NARY.
09 U1.
11 FILLER Pl CTURE X(08).
09 FI LLER REDEFI NES U- 1.
11 CASE-1 Pl CTURE X(01).
09 FI LLER REDEFI NES U- 1.
11 CASE-3 Pl CTURE S9(10) Bl NARY.
09 FI LLER REDEFI NES U- 1.
11 CASE-DEF PO NTER
05 FI LLER REDEFI NES U.
07 CASE- OTHER PA NTER

197

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Sequence Types

Overview

Bounded and unbounded
sequences

Incoming and outgoing sequences

198

This section describes how sequence types are mapped to COBOL. First, it
describes the various sequence types that are available.

A sequence can be either bounded or unbounded. A bounded sequence is of
a specified size, while an unbounded sequence has no specified size. For
example:

/1 1DL

typedef sequence<| ong, 10> bounded seq
attribute boundedseq seql

typedef sequence<| ong> unboundedseq
attri but e unboundedseq seq2

Bounded and unbounded sequences are represented differently in COBOL.
However, regardless of whether a sequence is bounded or unbounded, a
supporting group item is always generated by the Orbix E2A IDL compiler,
to provide some information about the sequence, such as the maximum
length, the length of the sequence in elements, and the contents of the
sequence (in the case of the unbounded sequence). After a sequence is
initialized, the sequence length is equal to zero. The first element of a
sequence is referenced as element 1.

A sequence that is being passed as an incoming parameter to a COBOL
operation is passed as an I Nor | NOUT value by the OOAGET function into the
operation parameter buffer at the start of the operation.

A sequence that is being passed as an outgoing parameter or result from a
COBOL operation is copied as an | NOUT, QUT, or RESULT value by the coapuT
function from the complete operation parameter buffer that is passed to it at
the end of the operation.

Mapping for Sequence Types

IDL-to-COBOL mapping for A bounded sequence is represented by a COBOL OOOURS clause and a
bounded sequences supporting group item. For example:

1. Consider the following IDL:

/1 1DL
interface exanpl e

{
typedef sequence<l ong, 10> boundedsegq;
attribute boundedseq aseq;
boundedseq nyop(i n boundedseq nyseq);

h
2. The preceding IDL maps to the following COBOL:

Example 14: COBOL Example for Bounded Sequences (Sheet 1 of 2)

Khkkkkkkhkhhhhkhkhhhhhhkhkhhhhhhhhhhhhhkhhhhhhkkhhhhhhkkkhhhhkkkhkhhhkkkk*

* Attribute: aseq
* Mapped nane: aseq
* Type: exanpl e/ boundedseq (read/ wite)

RS SR RS S S S E R RS E SR E SRR SRR R EEEEEEEEEEEEEEEEEE SRR

01 EXAWPLE- ASEQ ARGS.

03 RESULT-1 OOCURS 10 TI MES.
05 RESULT PI CTURE S9(10) BI NARY.
03 RESULT- SEQUENCE.
05 SEQUENCE- MAXI MM Pl CTURE 9(09) Bl NARY
VALLE 10.
05 SEQUENCE- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- BUFFER PO NTER VALUE NULL.
05 SEQUENCE- TYPE PO NTER VALUE NULL.
EEE R RS SRR RS SRS SRR RS EE SRR R SRS EEEERE SRR R R SRR REEEEEEEEEEEEEEEEESS
* Qperation: nyop
* Mapped narre: nyop
* Argunents: <i n> exanpl e/ boundedseq nyseq
* Returns: exanpl e/ boundedseq

* User Exceptions: none

D R R

01 EXAWPLE- MYCP- ARGS.

03 MYSEQ 1 OOCLRS 10 TI MES.
05 MYSEQ Pl CTURE S9(10) Bl NARY.
03 MYSEQ SEQUENCE
05 SEQUENCE- MAXI MUM Pl CTURE 9(09) Bl NARY
VALLE 10.
05 SEQUENCE- LENGTH PI CTURE 9(09) BI NARY

199

CHAPTER 6 | IDL-to-COBOL Mapping

IDL-to-COBOL mapping for
unbounded sequences

200

Example 14: COBOL Example for Bounded Sequences (Sheet 2 of 2)

VALLE 0.
05 SEQUENCE- BUFFER POl NTER VALUE NULL.
05 SEQUENCE- TYPE PO NTER VALUE NULL.
03 RESULT-1 OOOLRS 10 TI MES.
05 RESULT Pl CTURE S9(10) Bl NARY.
03 RESULT- SEQUENCE.
05 SEQUENCE- MAXI MM Pl CTURE 9(09) Bl NARY
VALLE 10.
05 SEQUENCE- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- BUFFER POl NTER VALUE NULL.
05 SEQUENCE- TYPE PO NTER VALUE NULL.

All elements of a bounded sequence can be accessed directly. Unpredictable
results can occur if you access a sequence element that is past the current
length but within the maximum number of elements for the sequence.

An unbounded sequence cannot map to a COBOL OOCURS clause, because
the size of the sequence is not known. An incoming unbounded sequence is
instead represented as a USAGE | S PA NTER data item. A pointer is supplied
that refers to an area of memory containing the sequence, which is not
directly accessible. You must call SEQGEET to copy a specified element of the
sequence into an accessible data area. (Refer to “SEQGET” on page 347 for
more details). In this case, a group item is created to hold one element of
the sequence, and a supporting group item is also created.

An outgoing unbounded sequence must be supplied by the implementation
of an operation. This can be either a pointer that was obtained by an IN or
I NQUT parameter, or an unbounded sequence constructed by using the
SEQALLQC function.

Mapping for Sequence Types

Example of unbounded sequences The example can be broken down as follows:
mapping 1. Consider the following IDL:

/1 1DL
interface exanpl e

{
typedef sequence<l ong> unboundedseq;
attribute unboundedseq aseq;
unboundedseq nyop(i n unboundedseq nyseq);

h
2. The preceding IDL maps to the following COBOL:

Example 15: COBOL Example for Unbounded Sequences (Sheet 1 of 2)

khkkkkhkkhkhhkhkhkhkhhhkhkhhhhhhkhhhhhhkhhhhhhkhhhhhhhhhhhhhkhhhhhhkhhhhhhkhkhhkxx

* Attribute: aseq
* Mapped nane: aseq
* Type: exanpl e/ unboundedseq (read/ wite)

RS SR S S E S SRR RS SRR E R SRR SRR EEEEEEEEEEEEEEE SRR

01 EXAWPLE- ASEQ ARGS.

03 RESULT-1.
05 RESULT Pl CTURE S9(10) Bl NARY.
03 RESULT- SEQUENCE.
05 SEQUENCE- MAXI MM Pl CTURE 9(09) BI NARY
VALLE 0.
05 SEQUENCE- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- BUFFER PO NTER
VALUE NULL.
05 SEQUENCE- TYPE PA NTER
VALUE NULL.
LR R R R R R R R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEES]
* Cperation: nyop
* Mapped narre: nyop
* Argunent s: <i n> exanpl e/ unboundedseq nyseq
* Returns: exanpl e/ unboundedseq
* User Exceptions: none
khkkhkhkkhhhhkhkhkhhhhkhkhhhhhkhkhhhhhkhhhhhhhhhhdhhhhddhhhhhdhrhhhdhrhhhhixx
01 EXAWPLE- MYCP- ARGS.
03 MYSEQ 1.
05 MYSEQ Pl CTURE S9(10) Bl NARY.
03 MYSEQ SEQUENCE.
05 SEQUENCE- MAXI MM PI CTURE 9(09) Bl NARY
VALLE 0.

201

CHAPTER 6 | IDL-to-COBOL Mapping

Example 15: COBOL Example for Unbounded Sequences (Sheet 2 of 2)

05 SEQUENCE- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- BUFFER PO NTER
VALUE NULL.
05 SEQUENCE- TYPE PQ NTER
VALUE NULL.
03 RESULT-1.
05 RESULT Pl CTURE S9(10) Bl NARY.
03 RESULT- SEQUENCE.
05 SEQUENCE- MAXI MUM Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- BUFFER PO NTER
VALUE NULL.
05 SEQUENCE- TYPE PO NTER
VALUE NULL.

Initial storage is assigned to the sequence via SEQALLCC. Elements of an
unbounded sequence are not directly accessible. You can use SEQEET and
SEQBET to access specific elements in the sequence.

Note: For details and examples of how to use the APIs pertaining to
sequences, see “SEQALLOC” on page 335, “SEQDUP” on page 339,
“SEQFREE” on page 344, “SEQGET” on page 347, and “SEQSET” on
page 350.

202

Mapping for Array Type

Mapping for Array Type

Overview This section describes how arrays are mapped to COBOL.
IDL-to-COBOL mapping An IDL array definition maps directly to the COBOL OOCURS clause. Each
for arrays element of the array is directly accessible.

Example of IDL-to-COBOL

203

CHAPTER 6 | IDL-to-COBOL Mapping

204

The preceding IDL maps to the following COBOL:

B R R R R R

* Attribute: aarray
* Mapped name: aarray
* Type: exanpl e/l ong_array (read/ wite)

EEEEEEE RS EEE R EEESESS

01 EXAMVPLE- AARRAY- ARGS.

03 RESULT-1 OOOURS 2 Tl MES.
05 RESULT-2 QOCOURS 5 TI MES.
07 RESULT Pl CTURE S9(10) BI NARY.
LR R R SRS SR SRS S SRR S SRR RS SRR RS R R R R SRR EEEEEEREEEEEEEEE S
* Qperation: nyop
* Mapped nane: nyop
* Argurent s: <i n> exanpl e/ | ong_array nyarray
* Returns: exanpl e/ | ong_arr ay

* User Exceptions: none
RS SRR RS RS SRS R SRR RS EEEEE RS EEEEEEEEEEEEEEES]

01 EXAVPLE- MYCP- ARGS.

03 MYARRAY- 1 QOCOURS 2 TI MES.
05 MYARRAY- 2 OOOURS 5 TI MES.

07 MYARRAY Pl CTURE S9(10) BI NARY.
03 RESULT-1 QCORS 2 TI MES.
05 RESULT-2 OOOURS 5 TI MES.

07 RESULT Pl CTURE S9(10) BI NARY.

Mapping for the Any Type

Mapping for the Any Type

Overview

IDL-to-COBOL mapping
for anys

Example of IDL-to-COBOL
mapping for anys

This section describes how anys are mapped to COBOL.

The IDL any type maps to a COBOL pointer.

The example can be broken down as follows:
1. Consider the following IDL:

/1 1DL

interface exanpl e

{
typedef any a_any;
attribute a_any aany;
a_any nyop(in a_any nyany);

IE

205

CHAPTER 6 | IDL-to-COBOL Mapping

2. The preceding IDL maps to the following COBOL:

B R R R R R

* Attribute: aany
* Mapped name: aany
* Type: exanpl e/ a_any (read/wite)

EEEEEEE RS EEE R EEESESS

01 EXAMVPLE- AANY- ARGS.

03 RESULT PO NTER
VALUE NULL.
RS SRR RS RS E SRR SRS R R R R RS EEREREEEEEEEEEEEEEEEEEEEEEESESS
* (peration: nyop
* Mapped narre: nyop
* Argunent s: <i n> exanpl e/ a_any nyany
* Returns: exanpl e/ a_any

* User Exceptions: none

B R R

01 EXAVPLE- MYCP- ARGS.

03 MYANY PQ NTER
VALUE NULL.
03 RESULT PO NTER
VALUE NULL.
Accessing and changing The contents of the any type cannot be accessed directly. Instead you can
contents of an any use the ANYGET function to extract data from an any type, and use the

ANYSET function to insert data into an any type.

Before you call ANYGET, call TYPEGET to retrieve the type of the any into the
level 01 data name that is generated by the Orbix E2A IDL compiler. This
data item is large enough to hold the largest type name defined in the
interface. Similarly, before you call ANYSET, call TYPESET to set the type of
the any.

Refer to “ANYGET” on page 272 and “TYPEGET” on page 369 for details
and an example of how to access the contents of an any. Refer to “ANYSET”
on page 274 and “TYPESET” on page 371 for details and an example of
how to change the contents of an any.

206

Mapping for User Exception Type

Mapping for User Exception Type

Overview This section describes how user exceptions are mapped to COBOL.

IDL-to-COBOL mapping An IDL exception maps to the following in COBOL:

for exceptions T A level 01 group item that contains the definitions for all the user
exceptions defined in the IDL. This group item is defined in COBOL as
follows:

01 i dl menber name- USER- EXCEPTI ONS.

The group item contains the following level 03 items:

+ An EXCEPTI O\ | Dstring that contains a textual description of the
exception.

+ A Ddata name that specifies the ordinal number of the current
exception. Within this each user exception has a level 88 data
name generated with its corresponding ordinal value.

. A udata name.

. A data name for each user exception, which redefines U. Within
each of these data names are level 05 items that are the
COBOL-equivalent user exception definitions for each user
exception, based on the standard IDL-to-COBOL mapping rules.

I Alevel 01 data name with an EX- FQ\- user except i onnane format,
which has a string literal that uniquely identifies the user exception.
I A corresponding level 01 data name with an

EX- FQ\- user except i onname- LENGTH format, which has a value

specifying the length of the string literal.

Note: If Dand Uare used as IDL identifiers, they are treated as reserved
words. This means that they are prefixed with | DL- in the generated
COBOL. For example, the IDL identifier, d, maps to the COBOL identifier,
| DL- D.

207

CHAPTER 6 | IDL-to-COBOL Mapping

Example of IDL-to-COBOL
mapping for exceptions

208

The example can be broken down as follows:
1. Consider the following IDL:

interface exanpl e {
exception bad {
| ong val uel;
string<32> reason;

}

exception worse {
short val ue2;
string<l6> errorcode;
string<32> reason;

}

voi d addNane(i n string nane) raises(bad, worse);

}s

Mapping for User Exception Type

2. The preceding IDL maps to the following COBOL:

Kk kkhhhkkhkhhhhkkkkhhhhkhkkhhhhkhkkkhhhhkkkhhhkhkkkkhhhkkkkhhkkkkkkk

* Qperation: AddNane

* Mapped narre: AddNane

* Argunents: <i n> string nane
* Returns: voi d

* Wser Exceptions: exanpl e/ bad

@ exanpl e/ wor se

EEEEE RS EEE RS SRR EEES
01 EXAMPLE- ADDNAME- ARGS.
03 NAME PA NTER
VALUE NULL.

E R R

* User exception bl ock

EEEEE SRR E R SRR EEES

01 EX- EXAWPLE- BAD Pl CTURE X(19)
VALLE "| DL: exanpl e/ bad: 1. 0".
01 EX- EXAVPLE- BAD- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 19.
01 EX- EXAWPLE- WORSE Pl CTURE X(21)
VALUE "I DL: exanpl e/ wor se: 1. 0".
01 EX- EXAWPLE- WCRSE- LENGTH Pl CTURE 9(09) Bl NARY
VALUE 21.
01 EXAML6- USER EXCEPTI ONS.
03 EXCEPTION-1D PO NTER
VALUE NULL.
03 D Pl CTURE 9(10) Bl NARY
VALUE 0.
88 D- NO- USEREXCEPTI ON VALUE 0.
88 D EXAMPLE- BAD VALUE 1.
88 D EXAMPLE- WORSE VALUE 2.
03 U Pl CTURE X(52)

VALUE LOW VALUES.
03 EXCEPTI ON- EXAMPLE- BAD REDEFI NES U.

05 VALUEL Pl CTURE S9(10) Bl NARY.
05 REASON Pl CTURE X(32).
03 EXCEPTI ON- EXAMPLE- WORSE REDEFI NES U
05 VALUE2 Pl CTURE S9(05) Bl NARY.
05 ERRCROCDE Pl CTURE X(16) .
05 REASON Pl CTURE X(32).
Raising a user exception Use the GOAERR function to raise a user exception. Refer to “COAERR” on

page 277 for more details.

209

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Typedefs

Overview
IDL-to-COBOL mapping

for typedefs

Example

210

This section describes how typedefs are mapped to COBOL.

COBOL does not support typedefs directly. Any typedefs defined are output
in the expanded form of the identifier that has been defined as a typedef,
which is used in the group levels of the attributes and operations.

The example can be broken down as follows:

1. Consider the following IDL:

interface exanpl e

{

typedef fixed<8,2> nillions;
typedef struct database

{
string<40> ful | _nare;
| ong date_of _birth;
string<10> nationality;
mllions incone;

} personnel ;

attribute mllions dollars;
personnel wages(in string enpl oyee nane, in mllions
new sal ary);

Mapping for Typedefs

2. Based on the preceding IDL, the attribute and operation argument
buffer is generated as follows:

E R

* Attribute: dollars
* Mapped nare: dol |l ars
* Type: exanple/nillions (read/wite)
EEEEE SRR RS SRS EEES
01 EXAVPLE- DOLLARS- ARGS.
03 RESULT Pl CTURE S9(6)V9(2) PACKED DEC NAL.
EEEEE RS EEE RS SRR EEES
* Cperation: wages
* Mapped nane: wages
* Argunents: <in> string enp_nane
* <in> exanple/m|lions new sal ary
* Returns: exanpl e/ per sonnel
* User Exceptions: none

Khkkkkkkhkhkhhhhhkhhhhhhhkhhhhhhhhhhhhhhkxhhhhkhkhhhkkkkhhhkkkkhkk

01 EXAVPLE- WACGES- ARGS.

03 EMP-NAMVE PO NTER VALUE NULL.
03 NEW SALARY Pl CTURE S9(6) VO(2)
PACKED- DECI MAL.
03 RESULT.
05 FULL- NAME Pl CTURE X(40).
05 DATE- CF- Bl RTH Pl CTURE S9(10) Bl NARY.
05 NATI ONALI TY Pl CTURE X(10).
05 | NCOVE Pl CTURE S9(6) VO(2)

PACKED- DECI MAL.

211

CHAPTER 6 | IDL-to-COBOL Mapping

212

Each typedef defined in the IDL is converted to a level 88 item in
COBOL, in the typecode section. The string literal assigned to the level
88 item is the COBOL representation of the typecode for this type.
These typecode key representations are used by COBOL applications
when processing dynamic types such as sequences and anys.

EEEE SRR E RS E RS EEESESES

* Typecode section
* This contains CDR encodi ngs of necessary typecodes.

*

EE e X

01 EXAMR4- TYPE PI CTURE X(25).
QCPY CORBATYP.
88 EXAVPLE- PERSCNNEL VALUE
"| DL: exanpl e/ per sonnel : 1. 0".
88 EXAVPLE-M LLI ONS VALUE
"I DL: exanpl e/ m | |'i ons: 1. 0".
88 EXAVPLE- DATABASE VALUE
"1 DL: exanpl e/ dat abase: 1. 0".
01 EXAVR4- TYPE- LENGTH Pl CTURE S9(09) Bl NARY
VALUE 25.

Mapping for the Object Type

Mapping for the Object Type

Overview

IDL-to-COBOL mapping
for typedefs

Example

This section describes how the obj ect type is mapped to COBOL.

The IDL obj ect type maps to a PO NTER in COBOL.

The example can be broken down as follows:
1. Consider the following IDL:

interface exanpl e

{

typedef (bject a_object;

attribute a object aobject;

a_obj ect nyop(in a_object nyobject);
Ji

213

CHAPTER 6 | IDL-to-COBOL Mapping

214

2.

The preceding IDL maps to the following COBOL:

LRSS SRS SR SRS S SRR S SRR E SRR RS SRR RS R R RS R EEEEEEEESS

* Attribute: aobj ect
* Mapped nane: aobj ect
* Type: exanpl e/ a_obj ect (read/wite)
EEEEEEE RS EEE R EEESESS
01 EXAMPLE- ACBJECT- ARGS.
03 RESULT PO NTER VALUE NULL.

khkkhkhhkhkhkhkhkhhhhkkkhhhhkhkhkhhhhhkkhkhhhhhkhkkhhhkhkhkkhhhhkhkkkhhhkkkkh k%

* (peration: nyop

* Mapped narre: nyop

* Argunents: <i n> exanpl e/ a_obj ect nyobj ect
* Returns: exanpl e/ a_obj ect

* User Exceptions: none
LRSS S S S SRS SRS SRS SRS SR SRR SRR SRR SRR RS SR EEEEEEEEEEEEE SRS
01 EXAMPLE- MYCP- ARGS.

03 MW- GBJECT PQ NTER VALUE NULL.

03 RESULT PQ NTER VALUE NULL.

Mapping for Constant Types

Mapping for Constant Types

Overview This section describes how constant types are mapped to COBOL.
IDL-to-COBOL mapping Each set of const definitions at a different scope are given a unique 01 level
for constants COBOL name, where at root scope this name is

Q.CBAl -i dl nenber nane- CONSTS. All other 01 levels are the fuly scoped name
of the module /i nt er f ace- CONSTS.

You can use the - O argument with the Orbix E2A IDL compiler, to override
the i dl menber nare with an alternative, user-defined name.

Example The example can be broken down as follows:
1. Consider the following IDL:
/1 1DL
const unsi gned | ong nyul ong =1000;
const unsigned short nyushort = 10;

nmodul e exanpl e

{
const string<l0> nystring="testing":
interface exanpl el
{
const |ong nyl ong =-1000;
const short nyshort = -10;
IE
interface exanpl e2
{
const float nyfloat =10.22;
const doubl e nydoubl e = 11. 33;
IE
h

215

CHAPTER 6 | IDL-to-COBOL Mapping

2. The preceding IDL maps to the following COBOL:

Example 16: COBOL Example for Constant Types (Sheet 1 of 2)

EEEEE SRR EE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEES

* Constants in root scope:
EEEEE RS EEEE RS EEE RS SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

01 G.CBAL- EXAML8- CONSTS.

03 MULONG PI CTURE 9(10) BI NARY
VALUE 1000.

03 MYUSHCRT PI CTURE 9(05) BI NARY
VALLE 10.

EEEEE RS EES

* Constants in exanpl e:

RS R E RS E SRS SR RS RS EEEREEEEEEEREREEEEEEEEEEEEEEEEEESEEEESES]

01 EXAMVPLE- QONSTS.

03 MYSTR NG Pl CTURE X(07)

VALLE "testing".

EEEEE RS EES

* Interface:

* exanpl e/ exanpl el

* Mapped narre:
* exanpl e- exanpl el

* |Inherits interfaces:

* (none)
R R RS SRS SRS EE SRR RS E SRR SRR SRS EE SRR EEEEEEREEEEEEEEEES

EE e Y

* Constants in exanpl e/ exanpl el:
R R SRS SRS SRS RS E S SRS E SRR SRR SRR EE SRR EEEREEEREEEEEEEEEES

01 EXAVPLE- EXAMPLEL- CONSTS.

03 MLONG PI CTURE S9(10) BI NARY
VALUE - 1000.

03 MYSHORT PI CTURE S9(05) BI NARY
VALLE - 10.

EEEEE SRR EE RS RS EEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEES

* |Interface:
* exanpl e/ exanpl e2

* Mapped nane:
* exanpl e- exanpl e2

* |Inherits interfaces:
* (none)

EEEEE RS EEESS

216

Mapping for Constant Types

Example 16: COBOL Example for Constant Types (Sheet 2 of 2)

LRSS SRR RS S S S ESS SRS RS S SRS S SR E RS R R SRR E R EEEEEEEEEES

* Constants in exanpl e/ exanpl e2:

D R XX

01 EXAVPLE- EXAVPLE2- GONSTS.
03 MYFLQOAT

03 MYDOUBLE

GOMPUTATI ONAL- 1

VALLE 1. 022e+01.

QOVPUTATI ONAL- 2

VALLE 1. 133e+01.

217

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Operations

Overview This section describes how IDL operations are mapped to COBOL.
IDL-to-COBOL mapping for An IDL operation maps to a number of statements in COBOL as follows:
operations 1. A 01 group level is created for each operation. This group level is

218

defined in the i dI menber nane copybook and contains a list of the
parameters and the return type of the operation. If the parameters or
the return type are of a dynamic type (for example, sequences,
unbounded strings, or anys), no storage is assigned to them. The 01
group level is always suffixed by - ARGS (that is,

FQ\- oper at i onnane- ARGS).

A 01 level is created for each interface, with a Pl CTURE clause that
contains the longest interface name of the interface operation(s)
contained in the i dl nenber nane copybook. The value of the PI CTURE
clause corresponds to the largest operation name length plus one, for
example:

01 FQN\ CPERATI ON Pl CTURE X(maxoper at i onnanestri ng+1)

The extra space is added because the operation name must be
terminated by a space when it is passed to the COBOL runtime by
CRBEXEC.

A level 88 item is also created as follows for each operation, with a
value clause that contains the string literal representing the operation
name:

88 FQ\- oper ati onnane VALUE "operati on-nane-string".

A level 01 item is also created as follows, which defines the length of
the maximum string representation of the interface operation:

01 FQN\ CPERATI ON- LENGTH Pl CTURE9(09) Bl NARY
VALUE naxoper at i onnamest ri ng+1

Mapping for Operations

The preceding identifiers in point 2 are referenced in a sel ect clause
that is generated in the i dI nenber naneD copybook. This sel ect clause
calls the appropriate operation paragraphs, which are discussed next.

The operation procedures are generated in the i dl nenber naneS source
member when you specify the - Z argument with the Orbix E2A IDL
compiler. For example:

i. Consider the following IDL:

interface exanpl e

{
| ong ny_operationl(in |ong nylong);
short ny_operation2(in short nyshort);

b

ii. Based on the preceding IDL, the following COBOL is generated in
the i dI menber name copybook:

EEEEE RS EEE RS EEE T EEES

* Cperation: ny_operationl
* Mapped nane: ny_operationl
* Argunents: <in> |ong nyl ong
* Returns: |ong
* User Exceptions: none
EEEEE R EEE R SRR EEES
01 EXAVPLE- MY- CPERATI ONL- ARGS.
03 MYLONG PI CTURE S9(10) Bl NARY.
03 RESULT PI CTURE S9(10) BI NARY.
RS R EE SRS R SRR SRR EEREEEEEEEEEEEEEEEEEEEEEEESEEEREEEEEEEEEES]
* Cperation: ny_operation2
* Mapped name: ny_operati on2
* Argurents: <in> short nyshort
* Returns: short
* User Exceptions: none
AR SRR RS EE SRR R EEEEEEEEEEEEEEEEEEEEEEEEEESESEEEEEEEEEEEES]
01 EXAMPLE- MY- CPERATI O\2- ARGS.
03 MYSHCRT PI CTURE S9(05) Bl NARY.
03 RESULT PI CTURE S9(05) Bl NARY.

219

CHAPTER 6 | IDL-to-COBOL Mapping

iii. The following code is also generated in the i dl nenber nane
copybook:

E O

* Qperation List section
* This lists the operations and attributes which an
* interface supports

E e X

01 EXAMPLE- CPERATI CN Pl CTURE X(30).
88 EXAMVPLE- My- CPERATI ONL VALUE
"ny_operationl: | DL: exanpl e: 1. 0".
88 EXAMPLE- My- CPERATI O\2 VALUE
"ny_operation2: | DL: exanpl e: 1. 0".
01 EXAVPLE- CPERATI ON- LENGTH Pl CTURE 9(09) Bl NARY
VALUE 30.

iv. The following code is generated in the i dI menber nameD copybook
member:

EVALUATE TRUE
WHEN EXAMPLE- MY- CPERATI ONL
PERFCRM DO EXAMPLE- MY- CPERATI ONL
WHEN EXAMPLE- MY- CPERATI ON\2
PERFCRM DO EXAMPLE- MY- CPERATI ON\2
END- EVALUATE

v. The following is an example of the code in the i dI nenber nanmeS
source member:

Example 17: Server Mainline Example for Operations (Sheet 1 of 3)

PROCEDURE DIV SI N
ENTRY " DI SPATCH'.
CALL "OQAREQ' USI NG REQUEST- | NFQ
SET W5 COAREQ TO TRUE.
PERFCRM CHECK- STATUS.
* Resolve the pointer reference to the interface nane which
* is the fully scoped interface nanme
CALL "STRCET" US| NG | NTERFACE- NAME
W\B- | NTERFACE- NAME- LENGTH
V\B- | NTERFACE- NAME.
SET W5 STRCET TO TRUE
PERFORM CHECK- STATUS.

220

Mapping for Operations

Example 17: Server Mainline Example for Operations (Sheet 2 of 3)

LRSS R RS RS SRR S EEE]

* Interface(s) :

LRSS R RS S S S ESS SRS RS S SRS S SRR E R R SRR EREEEEEEEEEEES

MOVE SPACES TO EXAMPLE- CPERATI ON

LRSS R RS S S S SRS S SRS RS S SRS S SRR E R R SRR EEEEEEEESEEEES

* Eval uate Interface(s) :

D R X X

EVALUATE W5- | NTERFACE- NAME
WHEN ' | DL: exanpl e: 1. 0

* Resol ve the pointer reference to the operation information
CALL "STRCGET" US| NG GPERATI ON- NAME
EXAVPLE- CPERATI ON- LENGTH
EXAMPLE- CPERATI ON
SET W5 STRGET TO TRUE
PERFCRM CHECK- STATUS
END- EVALUATE.

OCPY EXAMRID.
GOBACK.

DO EXAMPLE- MY- CPERATI ONL.
CALL "QQOAGET" USI NG EXAMPLE- MY- CPERATI ONL- ARGS.
SET W5 COAGET TO TRUE.
PERFCRM CHECK- STATUS.

* TCDQ Add your operation specific code here

CALL "QQOAPUT" USI NG EXAMPLE- MY- CPERATI ONL- ARGS.
SET W5 COAPUT TO TRUE
PERFCRM CHECK- STATUS.

DO EXAMPLE- MY- CPERATI ON\2.
CALL "QCOAGET" USI NG EXAMVPLE- MY- CPERATI ON\2- ARGS.
SET W&- COACGET TO TRUE
PERFCRM CHECK- STATUS.

* TCDQ Add your operation specific code here
CALL "CQOAPUT" US| NG EXAMPLE- MY- CPERATI ON\2- ARGS.

SET W& COAPUT TO TRUE
PERFCRM CHECK- STATUS.

221

CHAPTER 6 | IDL-to-COBOL Mapping

Example 17: Server Mainline Example for Operations (Sheet 3 of 3)

EEEEEE RS SRS E RS R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEES S

* Check Errors Copybook

EEEEEE R S S SR SRS S SRS E SRR S SRR RS R R RS SRR R R RS SRR EEEEEEEE S

OCPY GKERRS.

222

Mapping for Attributes

Mapping for Attributes

Overview This section describes how IDL attributes are mapped to COBOL.
IDL-to-COBOL mapping for IDL attributes are mapped to COBOL as level 88 items with a _GeT_ and
attributes _SET_ prefix. Two level 88 items are created for each attribute (that is, one

with a _GeT_ prefix, and one with a _SET_ prefix). However, readonly
attributes only map to one level 88 item, with a _GeT_ prefix.

Example The example can be broken down as follows:
1. Consider the following IDL:

interface exanpl e

{
readonly attribute | ong nyl ong;
attribute short nyshort;

}

2. The preceding IDL maps to the following COBOL:

01 EXAMPLE- CPERATI ON Pl CTURE X(29) .
88 EXAMPLE- CET- \YLONG VALUE
" _get _nyl ong: | DL: exanpl e: 1. 0".
88 EXAMPLE- CET- MYSHORT VALUE
"_get _nyshort: | DL: exanpl e: 1. 0".
88 EXAMPLE- SET- MYSHCRT VALUE
" _set_nyshort: | DL: exanpl e: 1. 0".
01 EXAVPLE- CPERATI ON- LENGTH Pl CTURE 9(09) Bl NARY
VALUE 29.

223

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Operations with a Void Return
Type and No Parameters

Overview This section describes how IDL operations that have a void return type and
no parameters are mapped to COBOL.

Example The example can be broken down as follows:
1. Consider the following IDL:

interface exanpl e

{
voi d nyoperation();
h
2. The preceding IDL maps to the following COBOL:
Example 18: COBOL Example for Void Return Type (Sheet 1 of 2)

LRSS S S SRS SRS S SRR E SRR S SE RS R R R R SRR RS R EEEEEEEE

* I nterface:

* exanpl e
*
* Mapped narre:
* exanpl e
*
*

Inherits interfaces:

* (none)
LRSS S S SR SRS S SRR RS SRR S SRR RS R R RS SRR R RS R EEEEEEEE S

EEEEEE R TSR R EE SRR EE S

* Qperati on: nyoper at i on
* Mapped nane: nyoper ati on
* Argunents: None
* Returns: voi d

* User Exceptions: none

EEEEEE R SRR EE SRR EEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEE S

01 EXAVPLE- MYCPERATI ON- ARGS.

03 FILLER Pl CTURE X(01).
EEEEEE RS E R EE SRR EEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEE S
CCPY EXAMLOX.

EEEEE R RS S SR SRS S SRR E SRR RS SRR SRR R RS SRR EEEEEEEEEEEEEEE S

224

Mapping for Operations with a Void Return Type and No Parameters

Example 18: COBOL Example for Void Return Type (Sheet 2 of 2)

LRSS SRR RS S S S ESS SRS RS S SRS S SR E RS R R SRR E R EEEEEEEEEES

*

* (peration List section
* This lists the operations and attributes which an
* interface supports

*

LRSS S S RS S S SRS S SRR SRR SRR SRR RS EEEEEEEEEESEEES

01 EXAMPLE- CPERATI ON Pl CTURE X(28).
88 EXAMVPLE- MYCPERATI CN VALUE
"nyoperation: | DL: exanpl e: 1. 0".
01 EXAVPLE- CPERATI ON- LENGTH PI CTURE 9(09)

Bl NARY VALUE 28.

Note: The filler is included for completeness, to allow the application to
compile, but the filler is never actually referenced. The other code
segments are generated as expected.

225

CHAPTER 6 | IDL-to-COBOL Mapping

Mapping for Inherited Interfaces

Overview This section describes how inherited interfaces are mapped to COBOL.
IDL-to-COBOL mapping for An IDL interface that inherits from other interfaces includes all the attributes
inherited interfaces and operations of those other interfaces. In the header of the interface being

processed, the Orbix E2A IDL compiler generates an extra comment that
contains a list of all the inherited interfaces.

Example The example can be broken down as follows:
1. Consider the following IDL:

i nterface Account

{

attribute short nybaseshort;
voi d nybasefunc(in | ong nybasel ong);

}

i nterface Savi ngAccount : Account

{
attribute short nyshort;

voi d nyfunc(in | ong nyl ong);
b

2. The preceding IDL maps to the following COBOL in the i dI renber nane
copybook:

Example 19: idimembernameX Copybook Example (Sheet 1 of 4)

EEEEEE RS SR SRS E R SRR R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE S

* |nterface:
* Account

Mapped nane:
Account

Inherits interfaces:
(none)

EEEEE RS EEEE RS EES

L

226

Mapping for Inherited Interfaces

Example 19:idlImembernameX Copybook Example (Sheet 2 of 4)

B R R

* Attribute: nybaseshor t
* Mapped name: nybaseshort
* Type: short (read/wite)

LR EEE SRR E RS RS EEE]

01 AGCCOUNT- MYBASESHCRT- ARGS.

03 RESULT Pl CTURE S9(05)
Bl NARY.
RS RS E R RS SRS SRR R SRR E R R R SR EEREEEREEEEEEEEEEEEEEEEEEEEEES]
* Qperation: nybasef unc
* Mapped narre: nybasef unc
* Argunents: <i n> | ong nybasel ong
* Returns: voi d

* User Exceptions: none
SRR R R RS SRS R R SRR R R R R R SR EEEEEEEEEEEEEEEEEEEEEEEEEEEEES]
01 AGCOOUNT- MYBASEFUNG- ARGS.

03 MYBASELONG Pl CTURE S9(10)

Bl NARY.

LRSS R RS S SRS SRR RS E SRS R SRR EEEEEEREEEEEEEEEEEEEES
* Interface:
* Savi ngAccount

* Mapped narre:
* Savi ngAccount

* |Inherits interfaces:

* Account
RS RS SR RS SRS RS SRR SRR RS RS EE RS EEEEEEEEREEE RS

LR EEE RS E R EEEE RS EEE]

* Attribute: nyshort
* Mapped name: nyshort
* Type: short (read/wite)

o R R X

01 SAVI NGAGCOOUNT- MYSHORT- ARGS.

03 RESULT PI CTURE S9(05)
Bl NARY.
EEEE SRS E RS E SRS EEES
* Attribute: nybaseshor t
* Mapped nanme: nybaseshort
* Type: short (read/wite)

LR R R R R R RS EEE]

01 SAVI NGAGCOOUNT- MYBASESHCORT- ARGS.
03 RESULT Pl CTURE S9(05)
Bl NARY.

227

CHAPTER 6 | IDL-to-COBOL Mapping

228

Example 19:idlImembernameX Copybook Example (Sheet 3 of 4)

Kk khhhhkkhhhhhkkkhhhhkkkkhhhhkkhkhhhhhkhkkhhhhkkkkhhhhkkkhhhhkkkkhkk

* Qperation: nyfunc

* Mapped nane: nyfunc

* Argunent s: <in> | ong nyl ong
* Returns: voi d

* User Exceptions: none
EEEEEE R S S SR SRR S S SRR E SRR S SRR RS R R R RS SRR EE R SRR EEEEEEEE S

01 SAVI NGAGCCOUNT- MYFUNG- ARGS.

03 MYLONG Pl CTURE S9(10)
Bl NARY.
EEEEE RS EEEE RS S EEES
* Qperation: nybasef unc
* Mapped nane: nybasef unc
* Argunents: <i n> | ong nybasel ong
* Returns: voi d

* User Exceptions: none
IR R RS SRS SRS EE S SRR SRS EE SRR E SRR SRR S SRR EREEEEEEEEEE S
01 SAVI NGACCOUNT- MYBASEFUNG- ARGS.
03 MYBASELONG PI CTURE S9(10)
Bl NARY.

B R R

*

* (peration List section
* This lists the operations and attributes which an
* interface supports

*

hhkkhhkhkhhkhkhhhhhkkhkhhhhkhkkhhhkkkhhhhkhkkhhhhkkkkhhhhkhkkhhhhkkkkhkkk

01 AGCOUNT- CPERATI ON Pl CTURE X(33).
88 ACOOUNT- GET- MYBASESHCRT VALUE
" _get _nybaseshort: | DL: Account:1.0".
88 ACCOUNT- SET- MYBASESHCORT VALUE
" _set _nybaseshort: | DL: Account: 1. 0".
88 ACOOUNT- MYBASEFUNC VALUE
"nybasefunc: | DL: Account: 1. 0".
01 ACOOUNT- CPERATI ON- LENGTH Pl CTURE 9(09)
Bl NARY VALLE 33.
01 SAVI NGAGCCOUNT- CPERATI ON Pl CTURE X(39).
88 SAVI NGACOOUNT- GET- MYSHORT VALUE
" _get_nyshort: | DL: Savi ngAccount : 1. 0".
88 SAVI NGACCOUNT- SET- MYSHCRT VALUE
"_set_nyshort: | DL: Savi ngAccount : 1. 0".
88 SAVI NGACOOUNT- MYFUNC VALUE
"nyfunc: | DL: Savi ngAccount : 1. 0".
88 SAVI NGACOOUNT- GET- MYBASESHCORT VALUE

" _get _nybaseshort: | DL: Savi ngAccount : 1. 0".

Mapping for Inherited Interfaces

Example 19:idlImembernameX Copybook Example (Sheet 4 of 4)

88 SAVI NGACOOUNT- SET- MYBASESHCRT VALUE
" _set_nybaseshort: | DL: Savi ngAccount : 1. 0".
88 SAVI NGACOOUNT- MYBASEFUNC VALUE
"nybasef unc: | DL: Savi ngAccount : 1. 0".
01 SAVI NGACOCOUNT- CPERATI ON- LENGTH Pl CTURE 9(09)
Bl NARY VALUE 39.

3. The following code is generated in the i di menber nameD copybook:

EVALUATE TRUE

WHEN ACOOUNT- GET- MYBASESHORT

PERFCRM DO ACOOUNT- GET- MYBASESHORT
WHEN ACOOUNT- SET- MYBASESHCRT

PERFCRM DO ACOOUNT- SET- MYBASESHORT
WHEN ACCOUNT- MYBASEFUNC

PERFCRM DO- ACOOUNT- MYBASEFUNC
WHEN SAVI NGACOCOUNT- GET- MYSHCRT

PERFCRM DO- SAVI NGAGOOUNT- GET- MYSHCRT
WHEN SAVI NGAGOOUNT- SET- MYSHORT

PERFCRM DO SAVI NGACOOUNT- SET- MYSHORT
WHEN SAVI NGAGOOUNT- MYFUNC

PERFCRM DO- SAVI NGAGOOUNT- MYFUNC
WHEN SAVI NGACOCOUNT- GET- MYBASESHCRT

PERFCRM DO SAVI NGACOOUNT- GET- MYBA- 6FF2
WHEN SAVI NGAGCOOUNT- SET- MYBASESHCRT

PERFCRM DO SAVI NGACOCOUNT- SET- MYBA- AE11
WHEN SAVI NGAGOOUNT- MYBASEFUNC

PERFCRM DO SAVI NGACCOUNT- MYBASEFUNC

END- EVALUATE

229

CHAPTER 6 | IDL-to-COBOL Mapping

4. The following is an example of the code in the i dI menber namesS server
implementation program:

Example 20: Server Mainline Example (Sheet 1 of 3)

EEEEE RS SRR RS E SRS EE SRR SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

* Interface(s) :

LR E R RS SR SRS S SRR E SRR S SRR RS R R R SRR EE RS R EEEEEEEE S
MOVE SPACES TO ACOOUNT- CPERATI CN
MOVE SPACES TO SAVI NGACOOUNT- CPERATI ON

EEEEE RS EES

* Evaluate Interface(s) :
EEEEEE R RS SR SRS S SRR E SRR S SRR SRR R SRR EEE SRR EEEEEEEE S

EVALUATE W& | NTERFACE- NAME
WHEN ' | DL: Account : 1. 0

* Resol ve the pointer reference to the operation information
CALL "STRCGET" USI NG CPERATI ON- NAME
ACCOUNT- CPERATI ON- LENGTH
AQCCOUNT- CPERATI CN
SET W& STRGET TO TRUE
PERFCRM CHECK- STATUS
WHEN ' | DL: Savi ngAccount : 1. 0'

* Resol ve the pointer reference to the operation information
CALL "STRGET" US| NG CPERATI ON- NAME
SAVI NGACOOUNT- CPERATI ON- LENGTH
SAVI NGACOOUNT- CPERATI CN
SET W5 STRCET TO TRUE
PERFCRM CHECK- STATUS
END- EVALUATE.

QCPY EXAMROD.
QOBACK.

DO ACOOUNT- GET- MYBASESHCRT.
CALL " QOAGET" USI NG ACCOUNT- MYBASESHORT- ARGS.
SET W5 COAGET TO TRUE.
PERFCRM CHECK- STATUS.

* TCDQ Add your operation specific code here
CALL " QOAPUT" USI NG ACOOUNT- MYBASESHORT- ARGS.

SET W5 COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

230

Mapping for Inherited Interfaces

Example 20: Server Mainline Example (Sheet 2 of 3)

DO- ACCOUNT- SET- MYBASESHCRT.
CALL "COAGET" USI NG ACOOUNT- MYBASESHORT- ARGS.
SET W5- COAGET TO TRUE
PERFCRM CHECK- STATUS.

* TCDQ Add your operation specific code here

CALL "COAPUT" USI NG ACOOUNT- MYBASESHORT- ARGS.
SET W5- COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

DO ACCOUNT- MYBASEFUNC.
CALL " GCOAGET" USI NG ACOOUNT- MYBASEFUNG- ARGS.
SET W5 COAGET TO TRUE
PERFCRM CGHECK- STATUS.

* TCDQ Add your operation specific code here

CALL " GOAPUT" USI NG ACOOUNT- MYBASEFUNG- ARGS.
SET W5 COAPUT TO TRUE
PERFCRMVI GHECK- STATUS.

DO SAVI NGACCOUNT- GET- MYSHCRT.
CALL "QOQOAGET" USI NG SAVI NGACOCOUNT- MYSHORT- ARGS.
SET W5- COACET TO TRUE
PERFCRVI CGHECK- STATUS.

* TCDQ Add your operation specific code here

CALL "QCQOAPUT" USI NG SAVI NGACOCUNT- MYSHORT- ARGS.
SET W& COAPUT TO TRUE
PERFCRM CHECK- STATUS.
DO SAVI NGACCOUNT- SET- MYSHORT.
CALL "OQOAGET" USI NG SAVI NGAGOOUNT- MYSHCRT- ARGS.
SET W5 COAGET TO TRUE
PERFCRM CHECK- STATUS.

* TCDQ Add your operation specific code here

CALL "COAPUT" USI NG SAVI NGACOOUNT- MYSHCRT- ARGS.
SET W5 COAPUT TO TRUE
PERFCRMV CHECK- STATUS.
DO SAVI NGACCOUNT- MYFUNC.

CALL "COAGET" USI NG SAVI NGAGCCOUNT- MYFUNG- ARGS.
SET W5 CAGET TO TRE
PERFCRM CHECK- STATUS.

* TCDQ Add your operation specific code here

231

CHAPTER 6 | IDL-to-COBOL Mapping

Example 20: Server Mainline Example (Sheet 3 of 3)

CALL "QOAPUT" USI NG SAVI NGAGCOOUNT- MYFUNC- ARGS.
SET W5- COAPUT TO TRUE.
PERFCRM CHECK- STATUS.
DO SAVI NGACOOUNT- GET- MYBA- 6FF2.
CALL " COAGET" USI NG SAVI NGACOCOUNT- MYBASESHORT- ARGS.
SET W5 COAGET TO TRUE.
PERFCRM CHECK- STATUS.

* TCDQ Add your operation specific code here

CALL " QOAPUT" USI NG SAVI NGACOCOUNT- MYBASESHORT- ARGS.
SET W5 COAPUT TO TRUE.
PERFORM CHECK- STATUS.

DO- SAVI NGAGCOUNT- SET- MYBA- AE11.
CALL "QOOACGET" USI NG SAVI NGAGCOOUNT- MYBASESHORT- ARGS.
SET W5- COAGET TO TRUE
PERFCRM CHECK- STATUS.

* TODQ Add your operation specific code here

CALL "QOAPUT" USI NG SAVI NGAGCOOUNT- MYBASESHORT- ARGS.
SET W5- COAPUT TO TRUE
PERFCRM CHECK- STATUS.

DO SAVI NGACOOUNT- MYBASEFUNC,
CALL "QOAGET" USI NG SAVI NGAGOOUNT- MYBASEFUNC- ARGS.
SET W5 COAGET TO TRUE.
PERFCRM CHECK- STATUS.

* TCDQO Add your operation specific code here

CALL "QOAPUT" USI NG SAVI NGAGOOUNT- MYBASEFUNC- ARGS.
SET W5 COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

Kk khhhhkkkhhhhhkkkhhhhkhkkhhhkkkkhhhhkhkkhhhhkkkhkhhhhkhkkhhhhkkkkhkkk

* Check Errors Copybook

EEEEE SRR EES

QCPY GHKERRS.

232

Mapping for Multiple Interfaces

Mapping for Multiple Interfaces

Overview This section describes how multiple interfaces are mapped to COBOL.

Example The example can be broken down as follows:
1. Consider the following IDL:

i nterface exanpl el

{
readonly attribute |ong nyl ong;
attribute short nyshort;

H

interface exanpl e2

{
readonly attribute |ong nyl ong;
attribute short nyshort;

b

2. Based on the preceding IDL, the following code is generated in the
i dl menber naneS member:

Example 21: Server Implementation Example (Sheet 1 of 3)

ENTRY "Dl SPATCH'.
CALL "ODAREQ' USI NG REQUEST- | NFO
SET W5 COAREQ TO TRE
PERFCRM CHECK- STATUS.
* Resol ve the pointer reference to the interface name which
* is the fully scoped interface name
CALL "STRCGET" USI NG | NTERFACE- NAME
W& | NTERFACE- NAME- LENGTH
V\E- | NTERFACE- NAME.
SET W5 STRCGET TO TRUE
PERFCRM CHECK- STATUS.

LR R R R R R RS EE]

* Interface(s) :

LR EEE SRR EEE SRS EESE]

MOVE SPACES TO EXAMPLEL- CPERATI ON
MOVE SPACES TO EXAMPLE2- CPERATI ON

233

CHAPTER 6 | IDL-to-COBOL Mapping

Example 21: Server Implementation Example (Sheet 2 of 3)

Kk khhhhkkhhhhhkkkhhhhkkkkhhhhkkhkhhhhhkhkkhhhhkkkkhhhhkkkhhhhkkkkhkk

* Bvaluate Interface(s) :

e R

EVALUATE W5- | NTERFACE- NAME
WHEN ' | DL: exanpl el: 1. O

* Resol ve the pointer reference to the operation information
CALL "STRCGET" US| NG CPERATI ON- NAMVE
EXAMPLEL- CPERATI ON- LENGTH
EXAMPLEL- CPERATI ON
SET W5 STRGET TO TRUE
PERFCRM CHECK- STATUS
WHEN ' | DL: exanpl e2: 1. 0'

* Resol ve the pointer reference to the operation information
CALL " STRCET" USI NG CPERATI ON- NAME
EXAMPLE2- CPERATI ON- LENGTH
EXAMPLE2- CPERATI CN
SET W5 STRCGET TO TRUE
PERFCRM CHECK- STATUS
END- EVALUATE.

QCPY EXAMR3D.
QGOBACK.

DO EXAMPLEL- GET- WLONG
CALL "QOOACET" USI NG EXAVPLEL- WLONG ARGS.
SET W5- COAGET TO TRUE
PERFCORM CHECK- STATUS.

* TCDQO Add your operation specific code here

CALL "QOAPUT" USI NG EXAMPLEL- WLONG ARGS.
SET W& COAPUT TO TRUE
PERFCRM CHECK- STATUS.

DO EXAMPLEL- GET- MYSHCRT.
CALL "QOOAGET" USI NG EXAMPLEL- MYSHORT- ARGS.
SET W5 COAGET TO TRUE
PERFCRM CHECK- STATUS.

* TCDQO Add your operation specific code here

CALL "QQOAPUT" USI NG EXAMPLEL- MYSHORT- ARGS.
SET W5 COAPUT TO TRUE

234

Mapping for Multiple Interfaces

Example 21: Server Implementation Example (Sheet 3 of 3)

PERFCRM CHECK- STATUS.
DO EXAMPLEL- SET- MYSHCRT.
CALL " QOAGET" USI NG EXAVPLEL- MYSHORT- ARGS.
SET Ws- COAGET TO TRUE.
PERFCRM CHECK- STATUS.

* TODQ Add your operation specific code here

CALL " QOAPUT" USI NG EXAVPLEL- MYSHORT- ARGS.
SET Ws- COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

DO EXAMPLE2- GET- WLONG
CALL " OOACET" USI NG EXAMPLE2- WYLONG ARGS.
SET W5- COACET TO TRUE
PERFCRM CHECK- STATUS.

* TODQ Add your operation specific code here

CALL " COAPUT" USI NG EXAMPLE2- WYLONG ARGS.
SET W5- COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

DO EXAMPLE2- GET- MYSHCRT.
CALL " OCQAGET" USI NG EXAMPLE2- MYSHORT- ARGS.
SET W5- COAGET TO TRUE
PERFCRM CHECK- STATUS.

* TODQ Add your operation specific code here

CALL "QOAPUT" USI NG EXAMPLE2- MYSHORT- ARGS.
SET Ws- COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

DO EXAMPLEZ2- SET- MYSHCRT.
CALL " OOACET" USI NG EXAMPLE2- MYSHCRT- ARGS.
SET Ws- COAGET TO TRUE
PERFCRM CHECK- STATUS.

* TODQ Add your operation specific code here

CALL " COAPUT" USI NG EXAMPLE2- MYSHCRT- ARGS.
SET Ws- COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

D R X X

* Check Errors Copybook

LR R R R R R RS EEE]

OCPY GHKERRS.

235

CHAPTER 6 | IDL-to-COBOL Mapping

236

In this chapter

CHAPTER 7

Orbix E2A IDL
Compiler

This chapter describes the Orbix E2A IDL compiler in terms of
the JCL used to run it, the COBOL members that it creates,
the arguments that you can use with it, and the configuration

settings that it uses.

This chapter discusses the following topics:

Running the Orbix E2A IDL Compiler page 238
Generated COBOL Members page 240
Orbix E2A IDL Compiler Arguments page 242
Configuration Member Settings page 257

Note: The supplied demonstrations include examples of JCL that can be
used to run the Orbix E2A IDL compiler. You can modify the
demonstration JCL as appropriate, to suit your applications. Any
occurrences of or bi xhl g in this chapter are meant to represent your

installation’s high-level qualifier.

237

CHAPTER 7 |

Running the Orbix E2A IDL Compiler

The Orbix E2A IDL compiler

You can use the Orbix E2A IDL compiler to generate COBOL source and

copybooks from IDL definitions.

Orbix E2A IDL compiler
configuration

The Orbix E2A IDL compiler uses the Orbix E2A configuration member for
its settings. The JCL that runs the compiler uses the | DL member in the

or bi xhl g. CONFI G configuration PDS.

Running the Orbix E2A IDL
compiler

For the purposes of this example, the COBOL source is generated in the first
step of the following job (that is, the JCL supplied with the si npl e server

demonstration):

or bi xhl . DEMCS, CCBCL. BU LD, JCL(S| MPLI DL)

Example of the SIMPLIDL JCL

The following is the supplied JCL to run the Orbix E2A IDL compiler for the

si npl e demonstration:

//SIMPLIDL JCB (),

Il
Il
/1
/1l
Il
/1l
Il

CLASS=A,
MBGOLASS=X,
MBALEVEL=(1, 1),
REQ ON=0M

TI ME=1440,

NOTI FY=8SYSU D,
COND=(4, LT)

/1* Obix E2A - Cenerate the OOBCL copybooks for the Sinple

[1* dient

Il
[1*
/11 DLCBL
Il
/1
/1l
Il
/1l

238

JOLLI B GRDER=(or bi xhl q. . PROCS)
I NCLUDE MEMBER=(CRXVARS)

EXEC ORXI DL,

SOURCE=S| MPLE,

| DL=8CRBI X. . DEMXS. | DL,

QCPYLI B=&CRBI X. . DEMCS. COBOL. OCPYLI B,
| MPL=&CRBI X. . DEMO6. OCBCOL. SRC,

| DLPARM' - cobol *

Description of the JCL

The preceding JCL generates COBOL copybooks from an IDL member called
S MPLE (see the SOURCE=SI MPLE line). This JCL does not specify any
compiler arguments (see the | DLPARMIine); therefore, it cannot generate any
COBOL source code members, which can only be generated if you specify
the - Sand - z arguments. See “Specifying the Compiler Arguments” on
page 243 for details of how to do this.

The settings and data definitions contained in the preceding JCL can be
explained as follows:

CRBI X

SAURCE
| DL
QCPYLI B

| MPL

| DLPARM

The high-level qualifier for the Orbix E2A installation, which is set
in or bi xhl g. PROCS(CRXVARS) .

The IDL member to be compiled.
The PDS for the IDL member.

The PDS for the COBOL copybooks generated by the Orbix E2A
IDL compiler.

The PDS for the COBOL source code members generated by the
Orbix E2A IDL compiler.

The plug-in to the Orbix E2A IDL compiler to be used (in the
preceding example, it is the COBOL plug-in), and any arguments
to be passed to it (in the preceding example, no arguments are
specified). See “Specifying the Compiler Arguments” on page 243
for details of how to specify the Orbix E2A IDL compiler
arguments as parameters to it.

239

CHAPTER 7

Generated COBOL Members

Overview

Generated members

This section describes the various COBOL source code and copybook
members that the Orbix E2A IDL compiler generates.

Table 19 provides an overview and description of the COBOL members that
the Orbix E2A IDL compiler generates, based on the IDL member name.

Table 19: COBOL Members Generated by the Orbix E2A IDL Compiler

Member Name

Member Type

Compiler Argument Description
Used to Generate

i dl menber naneS

Source code

-Z This is server implementation source code
member. It contains stub paragraphs for all the
callable operations. It is only generated if you
specify the - Z argument.

i dl mrenber naneSV | Source code -S This is the server mainline source code
member. It is only generated if you specify the
- Sargument.
i dl menber name Copybook Generated by This copybook contains data definitions that are
default used for working with operation parameters and
return values for each interface defined in the
IDL member.
i dl menber naneXx Copybook Generated by This copybook contains data definitions that are
default used by the Orbix COBOL runtime to support
the interfaces defined in the IDL member. This
copybook is automatically included in the
i dl renber nane copybook.
i dl menber naneD Copybook Generated by This copybook contains procedural code for
default performing the correct paragraph for the

request operation. This copybook is
automatically included in the i dl menber nameS
source code member.

240

Member name restrictions If the IDL member name exceeds six characters, the Orbix E2A IDL compiler
uses only the first six characters of the IDL member name when generating
the source and copybook member names. This allows space for appending
the two-character Sv suffix to the name for the server mainline code
member, while allowing it to adhere to the eight-character maximum size
limit for 0S/390 member names. In such cases, each of the other generated
member names is also based on only the first six characters of the IDL
member name, and is appended with its own suffix, as appropriate.

241

CHAPTER 7 |

Orbix E2A IDL Compiler Arguments

Overview This section describes the various arguments that you can specify as
parameters to the Orbix E2A IDL compiler.

Summary of the arguments The Orbix E2A IDL compiler arguments can be summarized as follows:
-Q Indicate whether single or double quotes are to be used for string
literals in COBOL copybooks.
-M Set up an alternative mapping scheme for data names.
-Z Generate server implementation source code.
-S Generate server mainline source code.
-T Indicate whether server code is for batch, IMS, or CICS.
-0 Override default copybook names with a different name.

All these arguments are optional. This means that they do not have to be
specified as parameters to the compiler.

In this section This section discusses the following topics:
Specifying the Compiler Arguments page 243
-M Argument page 244
-O Argument page 250
-Q Argument page 252
-S Argument page 253
-T Argument page 254
-Z Argument page 256

242

Specifying the Compiler Arguments

Overview This section describes how to specify the available arguments as parameters
to the Orbix E2A IDL compiler.

The IDLPARM DD name To denote the arguments that you want to specify as parameters to the
compiler, you can use the DD name, |1 DLPARM in the JCL that you use to run
the compiler. See “Running the Orbix E2A IDL Compiler” on page 238 for
an example of the JCL to run the Orbix E2A IDL compiler for the supplied
S| MPLE IDL member.

IDLPARM line format The parameters for the | DLPARMentry in the JCL take the following format:

/1 1| DLPARW' - cobol [: - M opt i on] [nenber nane]] [: - Qrenber nane]
[:-Qoption]][:-S][:-T[option]][:-2]"

Each argument must be preceded by a colon followed by a hyphen (that is,
:-), with no spaces between any characters or any arguments.

Note: If you set | sDef aul t =YES in the COBOL section of the

or bi xhl g. OONFI 1 DL) configuration member, you do not need to specify
the - cobol switch in the | DLPARMIine of the JCL. See “Configuration
Member Settings” on page 257 for more details.

243

CHAPTER 7 |

-M Argument

Description

IDLMAP DD card

Example of data names
generated by default

244

COBOL data names generated by the Orbix E2A IDL compiler are based on
fully qualified interface names by default (that is,

| DLmodul ename(s) - | DLi nt er f acenane- | DLvar i abl ename). You can use the
- Margument with the Orbix E2A IDL compiler to define your own alternative
mapping scheme for data names. This is particularly useful if your COBOL

data names are likely to exceed the 30-character restriction imposed by the
COBOL compiler.

To use the - Margument, you must define a DD card for | DLMAP in the JCL
that you use to run the Orbix E2A IDL compiler. This DD card specifies the
PDS for the mapping member generated by the Orbix E2A IDL compiler. For
example, you might define the DD card as follows in the JCL:

//1DLMAP DD D SP=SHR DSN=HLQ ASP50. DEMOS. CCBCL. VAP

You can define a DD card for | DLMAP even if you do not specify the - M
argument as a parameter to the Orbix E2A IDL compiler. The DD card is
simply ignored if the - Margument is not specified.

The example can be broken down as follows:
1. Consider the following IDL:

nodul e Banks{
modul e | ri shBanks{
interface Savi ngsBank{attribute short accountbal;};
interface National Bank{};
interface DepositBank{};

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates by
default the data names shown in Table 20 for the specified interfaces:

Table 20: Example of Default Generated Data Names

Interface Name Generated Data Name
Savi ngsBank Banks- | ri shBanks- Savi ngsBank
Nat i onal Bank Banks- | ri shBanks- Nat i onal Bank
Deposi t Bank Banks- | ri shBanks- Deposi t Bank

By using the - Margument, you can replace the fully scoped names shown in
Table 20 with alternative data names.

Steps to generate alternative The steps to generate alternative data name mappings with the - Margument
names with the -M argument are:
Step Action
1 | Run the Orbix E2A IDL compiler with the - Mcr eat e argument,

to generate the mapping member, complete with the fully
qualified names and their alternative mappings.

Edit (if necessary) the generated mapping member, to change
the alternative name mappings to the names you want to use.

Run the Orbix E2A IDL compiler with the - Mor ocess argument,
to generate COBOL copybooks with the alternative data names.

Step 1ASGenerate the mapping First, you must run the Orbix E2A IDL compiler with the - Mcreat e

member argument, to generate the mapping member, which contains the fully
qualified names and the alternative name mappings. The format of the
command in the IDL compiler JCL is as follows (where X represents the
scope level, and BANK is the name of the mapping member you want to

create):

| DLPARME' - cobol : - Mcr eat eXBANK ,

245

CHAPTER 7 |

Explanation of the command in
step 1

Examples of scoping levels
described in step 1

246

The components of the preceding command can be explained as follows
(note that there must be no spaces between these components):

create This specifies that the - Margument is to create a mapping member.

X

This specifies the level of scoping to be involved in the generated
data names in the mapping member. The possible scope levels are:

0 Map fully scoped IDL names to unscoped COBOL names (that
is, to the IDL variable name only).

1 Map fully scoped IDL names to partially scoped COBOL names
(that is, to I DLi nt er f acenane- | DLvar i abl enane). The scope
operator, /, is replaced with a hyphen, -.

2 Map fully scoped IDL names to fully scoped COBOL names (that
is, to | DLmodul enane(s) - | DLi nt er f acenare- | DLvar i abl enane).
The scope operator, /, is replaced with a hyphen, -.

This is the name of the mapping member to be created. It can be
up to six characters long. If you specify a name that is greater than
six characters, the name is truncated to the first six characters.

The level of scoping within the generated alternative name mappings is
determined by whether you specify 0, 1, or 2 with the - Mcr eat e command.

The example can be broken down as follows:

1.

Consider the following IDL:

nodul e Banks{

modul e | ri shBanks{
interface Savi ngsBank{attribute short accountbal;};
interface National Bank{voi d deposi t
(in long anount);};

2. Based on the preceding IDL example, a - Mcr eat eOBANK command
produces the BANK mapping member contents shown in Table 21.

Table 21: Example of Level-O-Scoped Generated Data Names

Fully Scoped IDL Names

Generated Alternative Names

deposi t

Banks Banks

Banks/ | ri shBanks I ri shBanks
Banks/ | ri shBanks/ Savi ngsBank Savi ngsBank
Banks/ | ri shBanks/ Savi ngsBank/ account bal
account bal

Banks/ | ri shBanks/ Nat i onal Bank Nat i onal Bank
Banks/ I ri shBanks/ Nat i onal Bank/ deposi t

Alternatively, based on the preceding IDL example, a - Mcr eat e1BANK
command produces the BANK mapping member contents shown in

Table 22.

Table 22: Example of Level-1-Scoped Generated Data Names

Fully Scoped IDL Names

Generated Alternative Names

Banks Banks
Banks/ | ri shBanks I ri shBanks
Banks/ | ri shBanks/ Savi ngsBank Savi ngsBank

Banks/ | ri shBanks/ Savi ngsBank/
account bal

Savi ngsBanks- account bal

Banks/ I ri shBanks/ Nat i onal Bank

Nat i onal Bank

Banks/ | ri shBanks/ Nat i onal Bank/
deposi t

Nat i onal Bank- deposi t

247

CHAPTER 7 |

Alternatively, based on the preceding IDL example, a - Mcr eat e2BANK
command produces the BANK mapping member contents shown in

Table 23.

Table 23: Example of Level-2-Scoped Generated Data Names

Fully Scoped IDL Names

Generated Alternative Names

Banks

Banks

Banks/ I ri shBanks

Banks- | ri shBanks

Banks/ | ri shBanks/ Savi ngsBank

Banks- | ri shBanks- Savi ngsBank

Banks/ | ri shBanks/ Savi ngsBank/
account bal

Banks- | ri shBanks- Savi ngsBanks-
account bal

Banks/ | ri shBanks/ Nat i onal Bank

Banks- | ri shBanks- Nat i onal Bank

Banks/ | ri shBanks/ Nat i onal Bank/
deposi t

Banks- I ri shBanks- Nat i onal Bank-
deposi t

Step 2AChange the alternative You can manually edit the mapping member to change the alternative
name mappings names to the names that you want to use. For example, you might change
the mappings in the BANK mapping member as follows:

Fully Scoped IDL Names Modified Names
Banks/ | ri shBanks I ri shBanks
Banks/ | ri shBanks/ Savi ngsBank MyBank
Banks/ | ri shBanks/ Nat i onal Bank M/Q her Bank
Banks/ | ri shBanks/ Savi ngsBank/ account bal Myaccount bal ance

248

Step 3AGenerate the COBOL
copybooks

Note the following rules:

I The fully scoped name and the alternative name meant to replace it
must be separated by one space (and one space only).

I The fully scoped IDL names generated are case sensitive, so that they
match the IDL being processed. If you add new entries to the mapping
member, to cater for additions to the IDL, the names of the new entries
must exactly match the corresponding IDL names in terms of case.

1 If the alternative name exceeds 30 characters, it is abbreviated to 30
characters, subject to the normal COBOL mapping rules for identifiers.

When you have changed the alternative mapping names as necessary, run

the Orbix E2A IDL compiler with the - Mprocess argument, to generate your
COBOL copybooks complete with the alternative data names that you have
set up in the specified mapping member.

The following command generates data names for the contents of the
specified IDL member, based on the alternative name mappings in the BANK
mapping member:

| DLPARME' - cobol : - Mpr ocessBANK

When you run the preceding command, your COBOL copybooks are
generated with the alternative data names you want to use, instead of with
the fully qualified data names that the Orbix E2A IDL compiler generates by
default.

249

CHAPTER 7 |

-O Argument

Description

Example of copybooks generated
by Orbix E2A IDL compiler

250

COBOL source and copybook names generated by the Orbix E2A IDL
compiler are based by default on the IDL member name. You can use the - O
argument with the Orbix E2A IDL compiler to map the default generated
member names to an alternative naming scheme, if you wish.

The - Oargument is, for example, particularly useful for users who have
migrated from IONA’s Orbix 2.3-based solution for 0S/390, and who want
to avoid having to change the OCPY statements in their existing application
source code. In this case, they can use the - Oargument to automatically
change the generated member names to the alternative names they want to

use.

Note: If you are an existing user who has migrated from IONA's Orbix
2.3-based solution for 0S/390, see the Mainframe Migration Guide for

more details.

The example can be broken down as follows:
1. Consider the following IDL contained in the TEST IDL member:

interface sinple

{
voi d sizeofgrid(in | ong nysizel, in |ong
nysi ze2) ;
IE
i nterface bl ock
{
void area(in |long nyarea);
b

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following COBOL copybooks, based on the IDL member name:

. TEST
. TESTX
. TESTD

Specifying the -O argument The following piece of JCL changes the copybook names from TEST

251

CHAPTER 7 |

-Q Argument

Description

Qualifying parameters

Specifying the -Q argument

252

The - Qargument indicates whether single or double quotes are to be used
on string literals in COBOL copybooks.

The - Qargument must be qualified by either s or d. If you specify - Gs, single
quotes are used. If you specify - Qi, double quotes are used. If you do not
specify the - Qargument, double quotes are used by default.

The following piece of JCL specifies that single quotes are to be used on
string literals in COBOL copybooks that are generated from the SI MPLE IDL
member:

/] SOURCE=S| MPLE,
..
/1 1 DLPARME' -cobol : - B’

-S Argument

Description The - S argument generates the server mainline source code member (that
is, the i dI nenber naneSV program). This program is not generated by default
by the Orbix E2A IDL compiler. It is only generated if you use the -S
argument, because doing so overwrites any server code that has already
been created based on that IDL member name.

WARNING: Only specify the - S argument if you want to generate a new
server mainline source code member or overwrite an existing one.

Specifying the -S argument The following piece of JCL creates a server mainline program called
SI MPLESV, based on the SI MPLE IDL member:

/1 SOURCE=S| MPLE

I ...
// | DLPARMF' -cobol : -S' .

253

CHAPTER 7 |

-T Argument

Description The - T argument allows you to specify whether the server code you want to
generate is for use in batch, IMS, or CICS. The valid options for this
argument are:

NATI VE Specifying - TNATI VE with - S generates batch server mainline
code. Specifying - TNATI VE with - Z generates batch server
implementation code.

Specifying - TNATI VE is the same as not specifying - T at all.
That is, unless you specify - TI M5,
Specifying the -T argument for The following piece of JCL creates a batch COBOL server mainline program
batch (called SI MPLESV) and a batch COBOL server implementation program

(called SI MPLES), based on the SI MPLE IDL member:

254

Specifying the -T argument for
IMS

Specifying the -T argument for
CICS

Note: Specifying - TNATI VE is the same as not specifying - T at all.

See “Developing the Server” on page 24 for an example of batch COBOL
server mainline and implementation programs.

The following piece of JCL creates an IMS COBOL server mainline program
(called sl MPLESV) and an IMS COBOL server implementation program
(called Sl MPLES), based on the SI MPLE IDL member:

/1l SOURCE=SI MPLE,
/1
/1l | DLPARME' - cobol : -S:-Z -TIMS

See “Developing the Server” on page 62 for an example of IMS COBOL
server mainline and implementation programs.

The following piece of JCL creates a CICS COBOL server mainline program
(called sl MPLESV) and a CICS COBOL server implementation program (called
S| MPLES), based on the SI MPLE IDL member:

/1 SOURCE=SI MPLE,
/1
I/ | DLPARME' -cobol : -S: -Z: -TACS ,

See “Developing the Server” on page 95 for an example of CICS COBOL
server mainline and implementation programs.

255

CHAPTER 7 |

-Z Argument

Description The - Z argument generates the skeleton server implementation source code
member (that is, the i dl menber nameS program). The generated code
contains stub paragraphs for all the callable operations in the defined IDL.
This program is not generated by default. It is only generated if you use the
- Z argument, because doing so overwrites any server implementation code

256

Configuration Member Settings

Overview This section describes the configuration settings for the Orbix E2A IDL
compiler -cobol plug-in for COBOL source code and copybook generation,
and the - nf a plug-in for IMS adapter mapping member generation.

Note: The -nfa plug-in is not relevant for batch application development.

In this section This section discusses the following topics:
COBOL Configuration Settings page 258
Adapter Mapping Member Configuration Settings page 261

257

CHAPTER 7 |

COBOL Configuration Settings

Overview The or bi xhl g. CONFI G | DL) member contains settings for COBOL, along
with those for C++ and several other languages.

Configuration settings The COBOL configuration is listed under Cobol as follows:

Cobol

{
Switch = "cobol *;
Shli bNane = " CRXBCBL";
Shli bMaj or Version = "x";
| sDefault = "NO';
Presetptions = ""

OBA. files and copybooks extensions
The Default is .chl, .xxx and .cpy on NT and none for
G5/ 390.

Cobol Extension = ""

| npl enent ati onExtension = ""

CopybookExt ension = ""

H*

Note: Settings listed with a # are considered to be comments and are not
in effect.

Mandatory settings The first three of the preceding settings are mandatory and must not be
altered. They inform the Orbix E2A IDL compiler how to recognize the
COBOL switch, and what name the DLL plug-in is stored under. The x value
for ShlibMajorVersion represents the version number of the supplied
ShlibName DLL.

User-defined settings All but the first three settings are user-defined and can be changed. The
reason for these user-defined settings is to allow you to change, if you wish,
default configuration values that are set during installation. To enable a
user-defined setting, use the following format.

setting_nane = "val ue";

258

List of available settings Table 24 provides an overview and description of the available configuration
settings.

Table 24: COBOL Configuration Settings (Sheet 1 of 2)

Setting Name Description Default

| sDef aul t Indicates whether COBOL is the
language that the Orbix E2A
IDL compiler generates by
default from IDL. If this is set to
YES, you do not need to specify
the - cobol switch when
running the compiler.

Preset Qpt i ons The arguments that are passed
by default as parameters to the
Orbix E2A IDL compiler.

Cobol Ext ensi on? Extension for the server cbl
mainline source code file on
Windows NT.

I npl enent at i onExt ensi on® | Extension for the server XXX

implementation source code file
on Windows NT. You should
copy this to a file with a . chl
extension, to avoid overwriting
any subsequent changes if you
run the Orbix E2A IDL compiler

again.

CopybookExt ensi on? Extension for COBOL cpy
copybooks on Windows NT.

Mai nCopybookSuf f i x Suffix for the main copybook.

Runt i meCopybookSuf f i x Suffix for the runtime copybook. | X

259

CHAPTER 7 |

Table 24: COBOL Configuration Settings (Sheet 2 of 2)

Setting Name Description Default
Sel ect CopybookSuf fi x Suffix for the select copybook. D
I npl enent at i onSuf fi x Suffix for the server S
implementation source code
member.
Server Suf fi x Suffix for the server mainline Y
source code member.

a. This is specific to Windows NT. It is ignored on 0S/390.

The last five settings in Table 24 are not listed by default in

or bi xhl g. CONFI @ 1 DL) . If you want to change the generated member
suffixes from the default values shown in Table 24, you must manually
enter the relevant setting name and its corresponding value.

260

Adapter Mapping Member Configuration Settings

Overview

Configuration settings

Mandatory settings

The - nf a plug-in allows the IDL compiler to generate IMS or CICS adapter
mapping members from IDL. The or bi xhl g. GONFI G | DL) member contains
configuration settings relating to the generation of IMS or CICS adapter
mapping members.

Note: See the IMS Adapter Administratoris Guide or CICS Adapter
Administratoris Guide for more details about adapter mapping members.

The IMS or CICS adapter mapping member configuration is listed under
MFAMappi ngs as follows:

MFAMappi ngs

{
Switch = "nfa";
Shli bName = " CRXBMFA';
Shl i bMaj or Version = "x";
I sDefault = "NO';
Preset Options = ""

Mappi ng file includes extensions

The Default is .map and none for Q8 390.
MFAVappi ngExt ensi on = ""

The default suffix is A

MFAMVappi ngSuf fix = ""

R

The first three of the preceding settings are mandatory and must not be
altered. They inform the Orbix E2A IDL compiler how to recognize the
adapter mapping member switch, and what name the DLL plug-in is stored
under. The x value for ShlibMajorVersion represents the version number of
the supplied ShlibName DLL.

261

CHAPTER 7 |

User-defined settings

262

In this chapter

CHAPTER 8

AP| Reference

This chapter summarizes the API functions that are defined
for the Orbix E2A COBOL runtime, in pseudo-code. It explains
how to use each function, with an example of how to call it

from COBOL.

This chapter discusses the following topics:

API Reference Summary page 264
API Reference Details page 268
Deprecated APIs page 381

Note: All parameters are passed by reference to COBOL APIs.

263

CHAPTER 8 | API Reference

APl Reference Summary

Introduction This section provides a summary of the available API functions, in
alphabetic order. See “API Reference Details” on page 268 for more details
of each function.

Summary listing ANYFREE(i nout PQA NTER any- poi nt er)
/!l Frees nmenory allocated to an any.

ANYCET(i n PA NTER any- poi nt er,
out buffer any-data-buffer)
/] Extracts data out of an any.

ANYSET(i nout PQA NTER any- poi nter,
in buffer any-data-buffer)
/1 Inserts data into an any.

COAERR(i n buffer user-exception-buffer)
/1 Allows a OOBCL server to raise a user exception for an
/1 operation.

COAGET(in buffer operation-buffer)
// Marshals in and inout arguments for an operation on the server
/1 side froman incom ng request.

COAPUT(out buf fer operati on-buffer)
// Marshals return, out, and inout argurments for an operation on
/1 the server side froman incomng request.

COAREQ(i n buffer request-details)
I/ Provides current request infornation

COARWN
I/ Indicates the server is ready to accept requests.

MEMALLOQ(i n 9(09) BI NARY nenory-si ze,
out PQA NTER mnenor y- poi nt er)
/1 Alocates nmermory at runtine fromthe program heap.

MEMFREE(i nout PQ NTER nenory- poi nt er)
I/ Frees dynam cally allocated nenory.

264

API| Reference Summary

CBJDUP(i n PA NTER obj ect - r ef er ence,
out PA NTER dupl i cat e-obj -ref)
/1 Duplicates an object reference.

CBJCGETI D(i n PA NTER obj ect - r ef er ence,
out X(nn) object-id,
in 9(09) BINARY object-id-Iength)
/1 Retrieves the object IDfroman object reference.

CBINEWi n X(nn) server-nare,

in X(nn) interface-nare,

in X(nn) object-id,

out PA NTER obj ect - r ef er ence)
/1 Creates a unique object reference.

CBJREL(i nout PQ NTER obj ect -r ef er ence)
/1 Rel eases an obj ect reference.

GBIR R(in X(nn) desired-service,

out PQA NTER obj ect - r ef er ence)
/1 Returns an object reference to an object through which a
/'l service such as the Nanming Service can be used.

CBJTCSTR(i n PA NTER obj ect - r ef er ence,

out PQA NTER obj ect-string)
/1l Returns a stringified interoperable object reference (1R
/1 froma valid object reference.

CRBARGS(i n X(nn) argunent-string,
in 9(09) BINARY argunent-string-Iength,
in X(nn) orb-nane,
in 9(09) Bl NARY orb- nane-| engt h)
/1 Initializes a client or server connection to an CRB.

CRBEXEQ(i n PA NTER obj ect -r ef er ence,
in X(nn) operation-nane,
inout buffer operation-buffer,
inout buffer user-exception-buffer)
/1 Invokes an operation on the specified object.

CRBHOST(in 9(09) Bl NARY host narre-1 engt h,
out X(nn) host name)
/1 Returns the hostnane of the server

CRBREJi n buffer interface-description)
/1 Describes an IDL interface to the OQOBCL runtine.

265

CHAPTER 8 | API Reference

CRBSRVR(i n X(nn) server-nane,
in 9(09) BINARY server-nane-| ength)
Il Sets the server nane for the current server process.

CRBSTAT(i n buffer status-buffer)
/1 Registers the status infornation bl ock.

CRBTI ME(in 9(04) BI NARY tineout-type

in 9(09) BINARY tineout-val ue)
/1 Used by clients for setting the call tineout.
/1 Used by servers for setting the event tineout.

SEQALLOC(in 9(09) BI NARY sequence- si ze,
in X(nn) typecode-key,
in 9(09) BINARY typecode-key-I ength,
i nout buffer sequence-control -data)
/1 Alocates nenory for an unbounded sequence

SEQDUP(i n buffer sequence-control -data,
out buffer dupl-seg-control -data)
/1 Duplicates an unbounded sequence control bl ock.

SEQFREE(i nout buf fer sequence-control -dat a)
/1 Frees the nenory allocated to an unbounded sequence.

SEQCET(i n buffer sequence-control -data,
in 9(09) BINARY el enent - nunber,
out buffer sequence-data)
Il Retrieves the specified element froman unbounded sequence.

SEQBET(out buf fer sequence-control -dat a,

in 9(09) BINARY el enment - nunber,

i n buffer sequence-data)
/1 Places the specified data into the specified el enent of an
/1 unbounded sequence.

STRFREE(i n PA NTER stri ng- poi nter)
Il Frees the nenory allocated to a bounded string.

STRGET(i n PA NTER string-pointer,
in 9(09) BINARY string-Iength,
out X(nn) string)
/1 Copies the contents of an unbounded string to a bounded string.

STRLEN(i n PA NTER string- poi nter,

out 9(09) BINARY string-Iength)
/1 Returns the actual length of an unbounded string.

266

API| Reference Summary

STRSET(out PA NTER string-poi nter,
in 9(09) BINARY string-I|ength,
in X(nn) string)
/1 Creates a dynamc string froma PIC X(n) data item

STRSETP(out PQA NTER st ri ng- poi nter,
in 9(09) BINARY string-Iength,
in X(nn) string)
I/l Creates a dynanic string froma PIC X(n) data item

STRTOCBI(i n PA NTER obj ect-string,

out PA NTER obj ect - r ef er ence)
/1l Oreates an object reference froman interoperabl e object
Il reference (ICR).

TYPECET(i nout PO NTER any- poi nter,
in 9(09) BINARY typecode-key-Iength,
out X(nn) typecode-key)

/] Extracts the type nane froman any.

TYPESET(i nout PQ NTER any- poi nter,
in 9(09) Bl NARY typecode- key- | ength,
in X(nn) typecode-key)

/1 Sets the type nane of an any.

WBTRFREE(i n PA NTER st ri ng- poi nter)
/1 Frees the nenory allocated to a bounded wi de string.

WBTRGET(i n PA NTER stri ng- poi nter,

in 9(09) BINARY string-Ilength,

out @ nn) string)
/1 Copies the contents of an unbounded wi de string to a bounded
/1 wide string.

WBTRLEN(i n PQ NTER stri ng- poi nter,
out 9(09) BINARY string-Iength)
/!l Returns the actual |ength of an unbounded wi de string.

WBTRSET(out PA NTER string-poi nter,
in 9(09) BINARY string-length
in g nn) string)
/1 CGreates a dynamc wide string froma PIC @n) data item

WBTRSETP(out PQA NTER stri ng- poi nter,
in 9(09) BINARY string-Iength,
in @nn) string)
/1 Oreates a dynanic wide string froma PIC @ n) data item

267

CHAPTER 8 | API Reference

APl Reference Detalls

Introduction This section provides details of each available API function, in alphabetic
order.

In this section This section discusses the following topics:
ANYFREE page 270
ANYGET page 272
ANYSET page 274
COAERR page 277
COAGET page 281
COAPUT page 286
COAREQ page 292
COARUN page 297
MEMALLOC page 298
MEMFREE page 300
OBJDUP page 301
OBJGETID page 303
OBJNEW page 305
OBJREL page 308
OBJRIR page 310
OBJTOSTR page 312
ORBARGS page 314
ORBEXEC page 317

268

API Reference Details

ORBHOST page 323
ORBREG page 325
ORBSRVR page 328
ORBSTAT page 329
ORBTIME page 333
SEQALLOC page 335
SEQDUP page 339
SEQFREE page 344
SEQGET page 347
SEQSET page 350
STRFREE page 355
STRGET page 357
STRLEN page 360
STRSET page 362
STRSETP page 365
STRTOOBJ page 367
TYPEGET page 369
TYPESET page 371
WSTRFREE page 373
WSTRGET page 374
WSTRLEN page 375
WSTRSET page 376
WSTRSETP page 377
CHECK-STATUS page 378

269

CHAPTER 8 | API Reference

ANYFREE

Synopsis

Usage

Description

Parameters

Example

270

ANYFREE(i nout PQ NTER any- poi nter);
/1 Frees nmenory allocated to an any.

Common to clients and servers.

The ANYFREE function releases the memory held by an any type that is being
used to hold a value and its corresponding typecode. Do not try to use the
any type after freeing its memory, because doing so might result in a
runtime error.

When you call the ANYSET function, it allocates memory to store the actual
value of the any. When you call the TYPESET function, it allocates memory to
store the typecode associated with the value to be marshalled. When you
subsequently call ANYFREE, it releases the memory that has been allocated
via ANYSET and TYPESET.

The parameter for ANYFREE can be described as follows:

any- poi nt er This is an i nout parameter that is a pointer to the
address in memory where the any is stored.

The example can be broken down as follows:
1. Consider the following IDL:

/11DL
interface sanple {

attribute any nyany;
IE

See also

API Reference Details

Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

01 SAWPLE- MYANY- ARGS.
03 RESULT PA NTER
VALUE NULL.

The following is an example of how to use ANYFREE in your client or

server program:

PROCEDURE DI VI SI O\
CALL "ANYFREE' USI NG RESULT CF SAMVPLE- MYANY- ARGS.

“ANYSET” on page 274.
“TYPESET” on page 371.
“The any Type and Memory Management” on page 397.

271

CHAPTER 8 | API Reference

ANYGET

Synopsis

Usage

Description

Parameters

Example

272

ANYCET(i n PA NTER any- poi nt er,
out buffer any-data-buffer)
// Extracts data out of an any.

Common to clients and servers.

The ANYGET function provides access to the buffer value that is contained in
an any. You should check to see what type of data is contained in the any,
and then ensure you supply a data buffer that is large enough to receive its
contents. Before you call ANYGET you can use TYPEGET to extract the type of
the data contained in the any.

The parameters for ANYGET can be described as follows:
any- poi nt er This is an i nout parameter that is a pointer to the
address in memory where the any is stored.

any- dat a- buf fer This is an out parameter that can be of any valid COBOL
type. It is used to store the value extracted from the any.

The example can be broken down as follows:
1. Consider the following IDL:

interface sanple {
attribute any nyany;
b

API Reference Details

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

01 SAWPLE- MYANY- ARGS.

03 RESULT PQ NTER
VALUE NULL.
01 EXAMPLE- TYPE Pl CTURE X(15).
COPY CORBATYP.
88 SAVPLE VALUE "1 DL: sanpl e: 1. 0"
01 EXAMPLE- TYPE- LENGTH Pl CTURE S9(09) Bl NARY
VALUE 22.

3. The following is an example of how to use ANYSET in a client or server
program:

WORKI NG STCRAGE SECTI ON
01 W5 DATA PIC S9(10) VALLE O.

CALL "TYPEGET" USING RESULT COF SAMPLE- MYANY- ARGS
EXAMPLE- TYPE- LENGTH
EXAMVPLE- TYPE.
SET W& TYPEGET TO TRUE
PERFCORM CHECK- STATUS.
* val i dat e typecode
EVALUATE TRUE
WHEN OCRBA- TYPE- LONG
* retrieve the ANY CCRBA: : Short val ue
CALL "ANYCET" USI NG RESULT CF SAMPLE- MYANY- ARGS
W\5- DATA
SET W& ANYGET TO TRUE
PERFCORM GHECK- STATUS
Dl SPLAY "ANY val ue equal s " W5 DATA
WHEN OTHER
Dl SPLAY "Wong typecode received, expected a LONG
t ypecode"
END- EVALUTE.

See also “ANYSET"” on page 274.

273

CHAPTER 8 | API Reference

ANYSET

Synopsis

Usage

Description

Parameters

Example

274

ANYSET(i nout PQA NTER any- poi nter,
in buffer any-data-buffer)
// Inserts data into an any.

Common to clients and servers.

The ANYSET function copies the supplied data, which is placed in the data
buffer by the application, into the any. ANYSET allocates memory that is
required to store the value of the any. You must call TYPESET before calling
ANYSET, to set the typecode of the any. Ensure that this typecode matches
the type of the data being copied to the any.

The parameters for ANYSET can be described as follows:
any- poi nt er This is an i nout parameter that is a pointer to the
address in memory where the any is stored.

any- dat a- buf fer This is an i n parameter that can be of any valid COBOL
type. It contains the value to be copied to the any.

The example can be broken down as follows:
1. Consider the following IDL:

interface sanple {
attribute any nyany;
b

API Reference Details

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

01 SAWPLE- MYANY- ARGS.

03 RESULT PQ NTER
VALUE NULL.
01 EXAMPLE- TYPE Pl CTURE X(15).
COPY CORBATYP.
88 SAVPLE VALUE "1 DL: sanpl e: 1. 0"
01 EXAMPLE- TYPE- LENGTH Pl CTURE S9(09) Bl NARY
VALUE 22.

3. The following is an example of how to use ANYSET in a client or server
program:

WORKI NG STCRAGE SECTI ON
01 W5 DATA Pl C S9(10) VALUE 100.

PROCEDURE DI VI SI ON

* Set the ANY typecode to be a CORBA: : Long
SET CCRBA- TYPE- LONG TO TRUE.
CALL "TYPESET" USING RESULT CF
SAMPLE- MYANY- ARGS
EXAMPLE- TYPE- LENGTH
EXAMPLE- TYPE.
SET W5 TYPESET TO TRUE
PERFCRM CHECK- STATUS.
* Set the ANY value to 100
CALL "ANYSET" USI NG RESULT OF SAMPLE- MYANY- ARGS
W5 DATA
SET W5 TYPESET TO TRUE
PERFCRM CHECK- STATUS.

Exceptions A OCORBA : BAD | NV_CRDER : TYPESET NOT_CALLED exception is raised if the
typecode of the any has not been set via the TYPESET function.

275

CHAPTER 8 | API Reference

See also T “ANYGET” on page 272.
T “TYPESET” on page 371.
T “The any Type and Memory Management” on page 397.

276

API Reference Details

COAERR

Synopsis

Usage

Description

Parameters

CQAERR(i n buf fer user-exception-buffer)
/1 Alows a OOBCL server to raise a user exception for an
/1 operation.

Server-specific.

The coaERR function allows a COBOL server to raise a user exception for the
operation that supports the exception(s), which can then be picked up on
the client side via the user exception buffer that is passed to CRBEXEC for the
relevant operation. To raise a user exception, the server program must set
the EXCEPTI O\ | D, the Ddiscriminator, and the appropriate exception buffer.

The server calls OCAERR instead of COAPUT in this instance, and this informs
the client that a user exception has been raised. Refer to the “Memory
Handling” on page 383 for more details. Calling COAERR does not terminate
the server program.

The client can determine if a user exception has been raised, by testing to
see whether the EXCEPTI ON- | D of the operation’s user - except i on- buf f er
parameter passed to CRBEXEC is equal to zero after the call. Refer to
“ORBEXEC” on page 317 for an example of how a COBOL client determines
if a user exception has been raised.

The parameter for COAERR can be described as follows:

user - except i on- buf f er This is an i n parameter that contains the COBOL
representation of the user exceptions that the
operation supports, as defined in the
i dl menber nane copybook generated by the Orbix
E2A IDL compiler. If the IDL operation supports no
user exceptions, a dummy buffer is generated—this
dummy buffer is not populated on the server side,
and it is only used as the fourth (in this case,
dummy) parameter to CRBEXEC.

277

CHAPTER 8 | API Reference

Example The example can be broken down as follows:

1. Consider the following IDL:

/11DL

interface sanple {
typedef string<10> Aboundedstri ng;
exception M/Exception { Aboundedstring except_str; };
Aboundedst ring nyoperation(in Aboundedstring instr,
i nout Aboundedstring inoutstr,
out Aboundedstring outstr)
rai ses (nyException);

}

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the i dI menber name copybook (where i di menber nare
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 22: The idimembername Copybook (Sheet 1 of 2)

B R R

* Qperation:
* Mapped narre:
* Argunents:

* Returns:
* User Exceptions:

nyoper at i on

nyoper at i on

<i n> sanpl e/ Aboundedstring instr

<i nout > sanpl e/ Aboundedst ri ng i noutstr
<out > sanpl e/ Aboundedstring outstr
sanpl e/ Aboundedst ri ng

sanpl e/ M/Except i on

E e

* operation-buffer

01 SAWPLE- MYCPERATI ON- ARGS.

03 I NSTR
03 | NQUTSTR
03 QUTSTR
03 RESULT

PI CTURE X(10).
PI CTURE X(10).
Pl CTURE X(10).
PI CTURE X(10).

dhkkhkhhhkhkhhhhhkhkhkhhhhkhkkhhhhkkhkkhhhhhkkhhhhhkkkhhhhhkkkhhhhkk k%

QCPY EXAWPLX

R R

EEEE RS E RS SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

*

* Qperation List section
* This lists the operations and attributes which an
* interface supports

278

API Reference Details

Example 22: The idimembername Copybook (Sheet 2 of 2)

*

LRSS S SRR S SRR SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRS

* The operation-nane and its corresponding 88 |evel entry

01 SAWPLE- CPERATI ON PI CTURE X(27).
88 SAMPLE- MYCPERATI ON VALUE
"nyoperation: | DL: sanpl e: 1. 0".
01 SAMPLE- CPERATI ON- LENGTH Pl CTURE 9(09)

Bl NARY VALUE 27.

RS SR RS S S SR RS E RS SRR S SRR SRR R R EEEEEEEEEEEES

*

* Typecode section
* This contains CDR encodi ngs of necessary typecodes.

*

Khkkhkhkhkhkhhhhhkhkhhhhhkkhkhhhhhkhkhhhhhkhkhkhhhhkhkkhhhkkkkhhkkkk*

01 EXAVPLE- TYPE Pl CTURE X(29).
QCPY CORBATYP.
88 SAWPLE- ABOUNDEDSTR NG VALUE
"1 DL: sanpl e/ Aboundedst ri ng: 1. 0".
01 EXAWPLE- TYPE- LENGTH Pl CTURE S9(09)

Bl NARY VALUE 29.

LR EEE R R EE R RS RS EEE]

* User exception bl ock
R R R R SR RS RS S SRS SRR SRS EE SRR SRR R EEEEEEEEE RS
01 EX- SAVPLE- MYEXCEPTI ON Pl CTURE X(26)
VALUE
"1 DL: sanpl e/ M/Excepti on: 1. 0".
01 EX- SAMPLE- MYEXCEPTI ON- LENGTH PI CTURE 9(09)
Bl NARY VALUE 26.
* user - excepti on-buf f er

01 EXAWPLE- USER- EXCEPTI ONS.

03 EXCEPTI O\-1D PQ NTER
VALUE NULL.
03 D Pl CTURE 9(10) Bl NARY
VALLE 0.
88 D- NO- USEREXCEPTI ON VALUE 0.
88 D SAMPLE- MYEXCEPTI ON VALLE 1.
03 U Pl CTURE X(10)
VALUE LON VALUES.
03 EXCEPTI O\ SAVPLE- MYEXCEPTI ON REDEFI NES U,
05 EXCEPT- STR PI CTURE X(10).

279

CHAPTER 8 | API Reference

3. The following is an example of the server implementation code for the
nyoper at i on operation:

DO SAMPLE- MYCPERATI ON
SET D- NO- USEREXCEPTI ON TO TRUE.
CALL "OOAGET" USI NG SAVPLE- MYCPERATI ON- ARGS.
SET W5- COAGET TO TRUE.
PERFCRM CGHECK- STATUS.

* Assum ng sone error has occurred in the application
I F APPLI CATI ON- ERRCR
* Rai se the appropi ate user exception
SET D SAWPLE- MYEXCEPTI ON TO TRUE

* Popul ate the val ues of the exception to be bassed back to
* the client
MOVE "FATAL ERRCR " TO EXCEPT- STR
CF EXAVPLE- USER- EXCEPTI CNS
CALL "CQAERR' USI NG EXAMPLE- USER- EXCEPTI ONS
SET W5 CQAERR TO TRUE
PERFCRM CHECQK- STATUS
ELSE
*all okay pass back the out/inout/return parameters.
CALL "QOAPUT" USI NG SAMPLE- MYCPERATI ON- ARGS
SET W& COAPUT TO TRUE
PERFCRM GHECQK- STATUS
END- | F.

Exceptions The appropriate CORBA exception is raised if an attempt is made to raise a
user exception that is not related to the invoked operation.

A OCORBA: : BAD PARAM : UNKNOWN_TYPECCDE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.

“COAGET” on page 281.

“COAPUT” on page 286.

“ORBEXEC"” on page 317.

The BANK demonstration in or bi xhl q. DEMOS. GCBCL. SRC for a complete
example of how to use COAERR

See also

280

API Reference Details

COAGET

Synopsis

Usage

Description

Parameters

COAGET(in buffer operation-buffer)
/1 Marshals in and inout arguments for an operation on the server
/1 side froman incom ng request.

Server-specific.

Each operation implementation must begin with a call to COAGET and end
with a call to caPUT. Even if the operation takes no parameters and has no
return value, you must still call COAGET and CQAPUT and, in such cases, pass
a dummy PI C X(1) data item, which the Orbix E2A IDL compiler generates
for such cases.

QQAGET copies the incoming operation’s argument values into the complete
COBOL operation parameter buffer that is supplied. This buffer is generated
automatically by the Orbix E2A IDL compiler. Only i n and i nout values in

this structure are populated by this call.

The Orbix E2A IDL compiler generates the call for CQAGET in the

i dI menber nameS source module (where i dl nenber nane represents the name
of the IDL member that contains the IDL definitions) for each attribute and
operation defined in the IDL.

The parameter for COAGET can be described as follows:

oper at i on- buf f er This is an i n parameter that contains a COBOL 01
level data item representing the data types that the
operation supports.

281

CHAPTER 8 | API Reference

Example The example can be broken down as follows:
1. Consider the following IDL:

interface sanple {
typedef string<10> Aboundedstri ng;
exception M/Exception { Aboundedstring except_str; };
Aboundedst ri ng nyoperation(in Aboundedstring instr,
i nout Aboundedstring inoutstr,
out Aboundedstring outstr)
rai ses (M/Exception);

}s

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following in the i dI menber name copybook (where i dI menber nare
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 23: The idimembername Copybook (Sheet 1 of 2)

khkkkkkhhhhhhkhhhhhhhhhhhhkhkhhhhhhhkkhhhhkhkkhhhhhkkkhhhhkkkkkkk k%

* Qperation: nyoper at i on

* Mapped nane: nyoper ati on

* Argunent s: <i n> sanpl e/ Aboundedstring instr

* <i nout > sanpl e/ Aboundedstri ng i noutstr
* <out > sanpl e/ Aboundedstring outstr

* Returns: sanpl e/ Aboundedst ri ng

* User Exceptions: sanpl e/ M/Exception

LR RS E RS S SRR S SRR SRR R EEEEEEEEEEEEEEEEEEEEEEEEEEE

* operation-buffer
01 SAMPLE- MYCPERATI ON- ARGS.

03 I NSTR PI CTURE X(10).

03 | NOUTSTR PI CTURE X(10).

03 QUTSTR PI CTURE X(10).

03 RESULT PI CTURE X(10).
QCPY EXAVPLX.

LR RS E RS EEEEE S EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
RS R E R SRS E RS E SRR R R RS EEREREEEEEEEEEEEEEEEEEEEEEESES]
*

* (peration List section

* This lists the operations and attributes which an

* interface supports
*

khkkkkkhkkhkhkkkhkhhkhhkhkhkhhhhhkhkhhhhhhkhhkhhhhkhhkhhhhkhhkhhhhkhkkhhhhhkhkhkkhkxx

282

API Reference Details

Example 23: The idimembername Copybook (Sheet 2 of 2)

* The operation-nane and its corresponding 88 | evel entry

01 SAVPLE- CPERATI ON Pl CTURE X(27).
88 SAMWPLE- MYCPERATI ON VALUE
"nyoperation: | DL: sanpl e: 1. 0".
01 SAWPLE- CPERATI ON- LENGTH PI CTURE 9(09)

Bl NARY VALUE 27.

LR EEE SRR EE SRS EEE]

*

* Typecode section
* This contains CDR encodi ngs of necessary typecodes.

*

LRSS S RS S SRS SRR SRR SRR EEEEEEEEEEEEEEEEESEEES

01 EXAVPLE- TYPE Pl CTURE X(29).
QCPY CORBATYP.
88 SAWPLE- ABOUNDEDSTR NG VALUE
"| DL: sanpl e/ Aboundedstri ng: 1. 0".
01 EXAWPLE- TYPE- LENGTH PI CTURE S9(09)

Bl NARY VALUE 29.

Khkkhkkhkkkhhhhkhkhkhhhhhkhkhkhhhhhkhkhhhhhkkhkkhhhhkkkkhhhkkkhhhhkkkkhhk

* User exception bl ock
LR RS R SRR RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES]
01 EX- SAWPLE- MYEXCEPTI ON Pl CTURE X(26)
VALUE
"1 DL: sanpl e/ M/Except i on: 1. 0".
01 EX- SAWPLE- MYEXCEPTI ON- LENGTH Pl CTURE 9(09)
Bl NARY VALUE 26.
* user - excepti on-buf f er

01 EXAWPLE- USER- EXCEPTI ONS.

03 EXCEPTI ON-1D PQ NTER
VALUE NULL.
03 D PI CTURE 9(10)
Bl NARY VALUE 0.
88 D NO USEREXCEPTI ON VALUE 0.
88 D- SAVPLE- MYEXCEPTI ON VALLE 1.
03 U PI CTURE X(10)
VALUE LOW VALUES,
03 EXCEPTI O\ SAVPLE- MYEXCEPTI ON REDEFI NES U,
05 EXCEPT- STR PI CTURE X(10).

283

CHAPTER 8 | API Reference

284

The following is an example of the server implementation code for the
nyoper at i on operation, which is generated in the i dl nenber naneS
source member when you specify the - Z argument with the Orbix E2A
IDL compiler:

DO SAMPLE- MYCPERATI ON

SET D- NO USEREXCEPTI ON TO TRUE

CALL "OOACGET" USI NG SAMPLE- MYCPERATI ON- ARGS.
SET W5- CQACGET TO TRUE

PERFCRM CHECK- STATUS.

* TCDQ Add your operation specific code here

EVALUATE TRUE

WHEN D- NO- USEREXCEPTI CN

CALL "COAPUT" USI NG SAMPLE- MYCPERATI ON- ARGS
SET W& COAPUT TO TRUE

PERFCRM CHECK- STATUS

END- EVALUATE.

The following is an example of a modified version of the code in point 3
for the nyoper at i on operation:

Wien changed for this operation can look like this
Sanpl e server inplenentation for nyoperation

DO SAMPLE- MYCPERATI ON

SET D- NO- USEREXCEPTI ON TO TRUE
CALL "QCOAGET" USI NG SAVPLE- MYCPERATI ON- ARGS.
SET W5 COAGET TO TRUE

* Display what the client passed in

Dl SPLAY "I n paraneter value equal s "

I NSTR G- SAVPLE- MYCPERATI ON- ARGS.

Dl SPLAY "I nout paraneter val ue equals "
| NOUTSTR CF SAMPLE- MYCPERATI ON- ARGS.

*Now nust popul ate the inout/out/return paraneters if
*appl i cabl e. See COAPUT for exanpl e.

EVALUATE TRUE

WHEN D- NO- USEREXCEPTI ON

CALL "QCOAPUT" USI NG SAWPLE- MYCPERATI ON- ARGS
SET W5- COAPUT TO TRUE

PERFCRM CGHECK- STATUS

END- EVALUATE.

Exceptions

See also

API Reference Details

A QCORBA: : BAD | N\V_CRDER : ARGS_ALREADY_READ exception is raised if the i n
or i nout parameter for the request has already been processed.

A CCORBA : BAD PARAM : | N\VALI D DI SCRI M NATCR TYPEQCDE exception is
raised if the discriminator typecode is invalid when marshalling a union
type.

A OCRBA: : BAD PARAM : UNKNOWN_TYPEQCDE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.

A OORBA: : DATA CONVERSI O\ : VALUE_QUT_CF_RANGE exception is raised if the
value is determined to be out of range when marshalling a | ong, short,
unsi gned short, unsi gned I ong | ong | ong, or unsi gned | ong | ong type.

T “COAERR” on page 277.
T “ORBEXEC” on page 317.

285

CHAPTER 8 | API Reference

COAPUT

Synopsis

Usage

Description

Parameters

286

COAPUT(out buf fer operation-buffer)
// Marshals return, out, and inout argunents for an operation on
/1 the server side froman incom ng request.

Server-specific.

Each operation implementation must begin with a call to GOAGET and end
with a call to coaPUT. The COAPUT function copies the operation’s outgoing
argument values from the complete COBOL operation parameter buffer
passed to it. This buffer is generated automatically by the Orbix E2A IDL
compiler. Only i nout , out, and the resul t out item are populated by this
call.

You must ensure that all i nout, out, and resul t values are correctly
allocated (for dynamic types) and populated. If a user exception has been
raised before calling GOAPUT, no i nout , out, or resul t parameters are
marshalled, and nothing is returned in such cases. If a user exception has
been raised, COAERR must be called instead of COAPUT, and no inout, out,
or result parameters are marshalled. Refer to “COAERR” on page 277 for
more details.

The Orbix E2A IDL compiler generates the call for CQAPUT in the
i dl menber nameS source module for each attribute and operation defined in
the IDL.

The parameter for COAPUT can be described as follows:

oper at i on- buf f er This is an out parameter that contains a COBOL 01
level data item representing the data types that the
operation supports.

API Reference Details

Example The example can be broken down as follows:
1. Consider the following IDL:

interface sanple {
typedef string<10> Aboundedstri ng;
excepti on M/Exception { Aboundedstring except_str; };
Aboundedst ri ng nyoperation(in Aboundedstring instr,
i nout Aboundedstring inoutstr,
out Aboundedstring outstr)
rai ses (M/Exception);

}

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 24:The idimembername Copybook (Sheet 1 of 2)

khkkkkkhhhhhhkhhhhhhhkhhhhhhhhhhhhkhkhhhhhhkkkhhhkhkkkhhhhkkkkhk*

* (Qperation: nyoper ati on

* Mapped nane: nyoper ati on

* Argunents: <i n> sanpl e/ Aboundedstring instr

* <i nout > sanpl e/ Aboundedstring i noutstr
* <out > sanpl e/ Aboundedstring out str

* Returns: sanpl e/ Aboundedst ri ng

* User Exceptions: sanpl e/ M/Excepti on

LRSS SR RS S SRS SRR RS SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEES

* operation- buf fer
01 SAWPLE- MYCPERATI ON- ARGS.

03 I NSTR PI CTURE X(10).

03 | NQUTSTR Pl CTURE X(10).

03 OUTSTR Pl CTURE X(10).

03 RESWLT PI CTURE X(10).
QOPY EXAMPLX.

LR RS E R RS E RS S EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESS
R R RS SRR RS SRS R RS R R R R R R SRR EREREREEEEEEEEEEEEEEEEEEESES]
*

* (peration List section

* This lists the operations and attributes which an

* interface supports

*

LR R R R EE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE]

287

CHAPTER 8 | API Reference

Example 24: The idimembername Copybook (Sheet 2 of 2)

* The operation-nane and its corresponding 88 | evel entry

01 SAVPLE- CPERATI ON Pl CTURE X(27).
88 SAMWPLE- MYCPERATI CN VALUE
"nyoperation: | DL: sanpl e: 1. 0".
01 SAWPLE- CPERATI ON- LENGTH Pl CTURE 9(09)

Bl NARY VALUE 27.

EEEE RS SRS E SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

*

* Typecode section
* This contains CDR encodi ngs of necessary typecodes.

*

R R R RS SRR SRS SRR R SRR RS EE RS R R EEEEEEEEEEEEEEEEE]

01 EXAVPLE- TYPE Pl CTURE X(29).
QOCPY CORBATYP.
88 SAWPLE- ABOUNDEDSTRI NG VALUE
"1 DL: sanpl e/ Aboundedst ri ng: 1. 0".
01 EXAVPLE- TYPE- LENGTH Pl CTURE S9(09)

Bl NARY VALUE 29.

LRSS R RS E RS S SRR RS SRS EEE SRR R R EEREEEEEEEEEEEEEES

* User exception bl ock

hhkkhhkhhkhkhhhhhkkhkhhhhkhkhhhhhkkkhhhhkhkkhhhkkkhkhhhhkhkkhhhhkkkkhkk

01 EX- SAMPLE- MYEXCEPTI ON Pl CTURE X(26)
VALUE
"1 DL: sanpl e/ M/Excepti on: 1. 0".
01 EX- SAMPLE- MYEXCEPTI ON- LENGTH PI CTURE 9(09)
Bl NARY VALUE 26.
* user exception buffer
01 EXAVPLE- USER- EXCEPTI ONS.

03 EXCEPTI ON-1 D PQ NTER
VALUE NULL.
03 D PI CTURE 9(10)
Bl NARY.
VALLE 0.
88 D NO USEREXCEPTI ON VALLE 0.
88 D- SAVPLE- MYEXCEPTI ON VALLE 1.
03 U Pl CTURE X(10)
VALUE LOW VALUES,
03 EXCEPTI O\ SAMPLE- MYEXCEPTI ON REDEFI NES U,
05 EXCEPT-STR Pl CTURE X(10).

288

API Reference Details

The following is an example of the server implementation code for the
nyoper at i on operation, which is generated in the i dl menber naneSs
source member when you specify the - Z argument with the Orbix E2A

IDL compiler:

DO SAMPLE- MYCPERATI ON

* TCDQO

SET D- NO USEREXCEPTI ON TO TRUE

CALL "OOACGET" USI NG SAWPLE- MYCPERATI ON- ARGS.
SET W5- CQACET TO TRUE

PERFCRM CHECK- STATUS.

Add your operation specific code here

EVALUATE TRUE

WHEN D- NO- USEREXCEPTI CN

CALL "QCOAPUT" USI NG SAMPLE- MYCPERATI ON- ARGS
SET W& COAPUT TO TRUE

PERFCRM CHECK- STATUS

END- EVALUATE.

289

CHAPTER 8 | API Reference

4. The following is an example of a modified version of the code in point 3
for the nyoper at i on operation

Wien changed for this operation can | ook like this
Sanpl e server inplenentation for nyoperation

DO SAMPLE- MYCPERATI ON

SET D NO USEREXCEPTI ON TO TRUE
CALL "OOACET" USI NG SAMPLE- MYCPERATI ON- ARGS.
SET W5 COAGET TO TRUE

* Display what the client passed in
Dl SPLAY "I n paraneter value equal s "
I NSTR CF SAMPLE- MYOPERATI ON- ARGS.
DI SPLAY "I nout paraneter val ue equals "
I NQUTSTR CF SAMPLE- MYCPERATI ONF ARGS.

*Now nust popul ate the inout/out/return parameters if

*appl i cabl e
MOVE "dient" TO | NOUTSTR CF SAMPLE- MYCPERATI ON- ARGS.
MOVE "xxxxx" TO QUTSTR CF SAMPLE- MYCPERATI ON- ARGS.
MOVE "YYYYY" TO RESULT OF SAMPLE- MYOPERATI ON- ARGS.

EVALUATE TRUE

WHEN D- NO- USEREXCEPTI ON

CALL "QCQOAPUT" USI NG SAMPLE- MYCPERATI ON- ARGS
SET W& COAPUT TO TRUE

PERFCRM GHECK- STATUS

END- EVALUATE

Exceptions A OORBA : BAD | NV_CRDER : ARGS_NOT_READ exception is raised if the i n or
i nout parameters for the request have not been processed.
A CORBA: : BAD PARAM : | N\VALI D DI SCR M NATCR TYPEQCDE exception is
raised if the discriminator typecode is invalid when marshalling a union
type.
A OORBA: : BAD_PARAM : UNKNOWN_TYPECCDE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.
A CCRBA: : DATA OONVERSI O\ : VALUE_QUT_CF_RANGE exception is raised if the
value is determined to be out of range when marshalling a | ong, short,
unsi gned short, unsigned | ong | ong | ong, or unsi gned | ong | ong type.

290

API Reference Details

See also T “COAERR” on page 277.
T “ORBEXEC” on page 317.

291

CHAPTER 8 | API Reference

COAREQ

Synopsis

Usage

Description

292

COAREQ(i n buffer request-details)
/1 Provides current request information

Server-specific.

The server implementation program calls COAREQto extract the relevant
information about the current request. COAREQ provides information about
the current invocation request in a request information buffer, which is
defined as follows in the supplied CORBA copybook:

01 REQUEST- | NFQ
03 | NTERFACE- NAVE USAGE |'S PO NTER VALUE NULL.
03 CPERATI O\ NAME USAGE |'S PO NTER VALUE NULL.
03 PR NO PAL USAGE |'S PO NTER VALUE NULL.
03 TARGET USAGE |'S PO NTER VALUE NULL.

In the preceding structure, the first three data items are unbounded CORBA
character strings. You can use the STRGET function to copy the values of
these strings to COBOL bounded string data items. The TARGET item in the
preceding structure is the COBOL object reference for the operation
invocation. After COAREQIs called, the structure contains the following data:

| NTERFACE- NAME The name of the interface, which is stored as an
unbounded string.

CPERATI ON-NAME The name of the operation for the invocation request,
which is stored as an unbounded string.

PRI NO PAL The name of the client principal that invoked the request,
which is stored as an unbounded string.
TARGET The object reference of the target object.

You can call CaAREQonly once for each operation invocation. It must be
called after a request has been dispatched to a server, and before any calls
are made to access the parameter values. Supplied code is generated in the
i dl menber naneS source module by the Orbix E2A IDL compiler when you
specify the - Z argument. Ensure that the COBOL bounded string and the
length fields are large enough to retrieve the data from the REQUEST- | NFO
pointers.

Parameters

Example

API Reference Details

The parameter for COAREQcan be described as follows:

request-details This is an i n parameter that contains a COBOL 01
level data item representing the current request.

The example can be broken down as follows:
1. Consider the following IDL:

/11DL
nodul e Sinpl e
{
interface S npl ety ect
{
voi d
call _ne();
¥
IE

Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the i dI nenber nane copybook (where i dI menber nane
represents the (possibly abbreviated) name of the IDL member that

contains the IDL definitions):

Example 25: The idimembername Copybook (Sheet 1 of 2)

LR EEE R R EEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEE]

* Cperation: call _ne
* Mapped narre: call _ne
* Argunents: None
* Returns: voi d

* User Exceptions: none
LR EEE R R RS EEEEE TS EEE]

01 S| MPLE- S| MPLECBIJECT- 70FE- ARGS.

03 FILLER Pl CTURE X(01).
SRR SRR RS SRS SRS E R SRR SR EE R R R R SRR R R SR EREEEEEEEREEEEE
QCPY S| MPLEX.

Kkkhkkhkkhkhhhhkhkhhhhhkkkhhhhhkhkhhhhhkhkkkhhhhkkkhhhhkhkkkhhhhkkkkhhkk
EEEE R R R R R RS EEE]

*

* (peration List section
* This lists the operations and attributes which an

* interface supports
*

293

CHAPTER 8 | API Reference

Example 25: The idimembername Copybook (Sheet 2 of 2)

Kk khhhhkkhhhhhkkkhhhhkkkkhhhhkkhkhhhhhkhkkhhhhkkkkhhhhkkkhhhhkkkkhkk

01 Sl MPLE- S| MPLECBIECT- CPERATI CN Pl CTURE X(36) .
88 S| MPLE- S| MPLECBJECT- CALL- ME VALUE
“cal | _me: | DL: Sinpl e/ Si npl eChj ect: 1.0".
01 S| MPLE- S- 3497- CPERATI ON- LENGTH Pl CTURE 9(09)

Bl NARY VALUE 36.

hhkkhhkhkhhkhkhkhhhhkkkhhhhkhkhkkhhhhkkkhhhhkhkhkkhhhkhkkkhhhkkhkkhhhkkkkhk*

*

* Typecode section

* This contai ns CDR encodi ngs of necessary typecodes.
*

EEEEE RS EES

01 S| MPLE- TYPE Pl CTURE X(27).
CCPY QCRBATYP.
88 SI MPLE- S| MPLECBIECT VALUE
"1 DL: Sinpl e/ Si npl eChj ect: 1. 0".
01 SI MPLE- TYPE- LENGTH Pl CTURE S9(09)

Bl NARY VALUE 27.

3. The following is an example of the server implementation code
generated in the i dl nrenber naneS server implementation member:

Example 26: Part of the idimembernameS Program (Sheet 1 of 2)

WIRKI NG STCRAGE SECTI ON

01 W5 | NTERFACE- NAVE Pl CTURE X(30).
01 W5 | NTERFACE- NAVE- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 30.

PROCEDURE DM S| ON

ENTRY " DI SPATCH'.

CALL " COAREQ USI NG REQUEST- | NFQ
SET W& COAREQ TO TRUE.
PERFCRM CHECK- STATUS.

Resol ve the pointer reference to the interface name
which is the fully scoped interface nare.
Not e make sure it can handle the nax interface nanme
| engt h.
CALL " STRCET" US| NG | NTERFACE- NAME
W\B- | NTERFACE- NAME- LENGTH

EE

294

API Reference Details

Example 26: Part of the idimembernameS Program (Sheet 2 of 2)

W\B- | NTERFACE- NAME.
SET W5- STRGET TO TRUE
PERFCRM GHECK- STATUS.

LR EEE SRR E RS RS EEE]

* Interface(s) evaluation:
LRSS R RS S S S SRS S SRS RS S SRS S SRR E R R SRR EEEEEEEESEEEES

MOVE SPACES TO S| MPLE- SI MPLECBIECT- CPERATI ON

EVALUATE W\&- | NTERFACE- NAVE
WHEN ' | DL: Si npl e/ Si npl e(oj ect: 1. 0
* Resol ve the pointer reference to the operation
* infornation
CALL "STRCGET" USI NG CPERATI ON- NAMVE
S| MPLE- S- 3497- CPERATI ON- LENGTH
SI MPLE- S| MPLECBJECT- CPERATI ON
SET W5 STRCGET TO TRUE
PERFCORM CHECK- STATUS
D SPLAY "Sinple::" Sl MPLE-SI MPLECBIECT- CPERATI ON
"i nvoked"
END- EVALUATE.
QCPY S| MPLED.

GCBACK.
DO S| MPLE- S| MPLECBIECT- CALL- ME.
CALL " COAGET" USI NG SI MPLE- SI MPLECBJECT- 70FE- ARGS.
SET W5 COAGET TO TRUE
PERFCRM CHECK- STATUS.

CALL " CoAPUT" USI NG SI MPLE- SI MPLECBJECT- 70FE- ARGS.
SET W5 COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

IR EEEEEE RS E SRS SRR RS SRR EEEEEEEEEEEEEEEEEEEEEEEEEE]

* Check Errors Copybook

Khkkhkhkkhkhhhhkkhkhhhhhkkhkhhhhhkkhhhhkkkhhhhkkhkhkhhhkkkhkhhhkkkk*

OCPY GHKERRS.

Note: The OGCPY CGHKERRS statement in the preceding example is used in
batch programs. It is replaced with GcPY CERRSMFA in IMS or CICS server
programs.

295

CHAPTER 8 | API Reference

Exceptions A OCRBA: : BAD | N\V_CRDER : NO CURRENT_REQUEST exception is raised if there
is no request currently in progress.

A OCRBA : BAD | NV_CRDER : SERVER NAME _NOT_SET exception is raised if
CRBSRVR is not called.

296

API Reference Details

COARUN

Synopsis

Usage

Description

Parameters

Example

Exceptions

COARIN
/1 Indicates the server is ready to accept requests.

Server-specific.

The COARWN function indicates that a server is ready to start receiving client
requests. It is equivalent to calling GRB: : run() in C++. Refer to the CORBA
Programmeris Reference, C++ for more details about GRB: : run() . There
are no parameters required for calling GOARUN. The call to COARW is the final
API call in your server mainline program.

QOOARWN takes no parameters.

The following is an example of how to use COARUN in your server mainline
program:

DI SPLAY "dving control to the ORB to process requests"”.
CALL "COARWN'.

SET W& COARUN TO TRUE
PERFCRM CHECK- STATUS.

A CCRBA: : BAD | N\V_CRDER : SERVER NAME_NOT_SET exception is raised if
CRBSRVR is not called.

297

CHAPTER 8 | API Reference

MEMALLOC

Synopsis

Usage

Description

Parameters

Exceptions

298

MEMALLOQ(i n 9(09) BI NARY nenory-si ze,
out PQA NTER mnenor y- poi nt er)
/1 Alocates nmermory at runtine fromthe program heap.

Common to clients and servers.

The MEMALLGC function allocates the specified number of bytes from the
program heap at runtime, and returns a pointer to the start of this memory
block.

MEMALLCC is used to allocate space for dynamic structures. However, it is
recommended that you use SEQALLOC when allocating memory for
sequences, because SEQALLQC can automatically determine the amount of
memory required for sequences. Refer to “SEQALLOC” on page 335 for
more details.

The parameters for MEMALLQC can be described as follows:
menor y- si ze This is an i n parameter that specifies in bytes the
amount of memory that is to be allocated.

menor y- poi nt er This is an out parameter that contains a pointer to
the allocated memory block.

A OCRBA : NO MEMCRY exception is raised if there is not enough memory
available to complete the request. In this case, the pointer will contain a null
value.

API Reference Details

Example The following is an example of how to use MEMALLCC in a client or server
program:
WRKI NG STCRAGE SECTI ON
01 Ws- MEMCRY- BLOCK PQ NTER VALUE NULL.
01 W& MEMORY- BLOCK- S| ZE Pl CTURE 9(09) BI NARY VALUE 30.
PROCEDURE DM SI ON
* allocates 30 bytes of nenory at runtinme fromthe heap
CALL "MENALLOC' USI NG Ws- MEMRY- BLOCK- S| ZE
W& MEMCRY- BLOCK.
See also

T “MEMFREE” on page 300.
“Memory Handling” on page 383.

299

CHAPTER 8 | API Reference

MEMFREE

Synopsis

Usage

Description

Parameters

Example

See also

300

MEMFREE(i nout PQ NTER nenor y- poi nt er)
I/ Frees dynamcally allocated nenory.

Common to clients and servers.

The MEMFREE function releases dynamically allocated memory, by means of a
a pointer that was originally obtained by using MeMALLOC. Do not try to use
this pointer after freeing it, because doing so might result in a runtime error.

The parameter for MEMFREE can be described as follows:

menor y- poi nt er This is an i nout parameter that contains a pointer
to the allocated memory block.

The following is an example of how to use MEMFREE in a client or server
program:

WORKI NG STCRAGE SECTI ON
01 W& MEMCRY- BLOCK PQA NTER VALUE NULL.

PROCEDURE DI VI SI O\

* Finished with the bl ock of menory allocated by call to MEMALLOC
CALL "MEMFREE' USI NG W& MEMCRY- BLOCK.

“MEMALLOC” on page 298.

API Reference Details

OBJDUP

Synopsis

Usage

Description

Parameters

Example

CBJDUP(i n PA NTER obj ect - r ef er ence,
out PA NTER dupl i cat e- obj -ref)
/1 Duplicates an object reference.

Common to clients and servers.

The CBIDUP function creates a duplicate reference to an object. It returns a
new reference to the original object reference and increments the reference
count of the object. It is equivalent to calling CORBA: : (bj ect: : _dupl i cate()
in C++. Because object references are opaque and ORB-dependent, your
application cannot allocate storage for them. Therefore, if more than one
copy of an object reference is required, you can use CBJDUP to create a
duplicate.

The parameters for CBJIDUP can be described as follows:
obj ect - r ef er ence This is an i n parameter that contains the valid
object reference.

dupl i cat e- obj - r ef This is an out parameter that contains the duplicate
object reference.

The following is an example of how to use CBIDUP in a client or server
program:

WIRKI NG STCRAGE SECTI O\
01 W5 SI MPLE- SI MPLECBIECT PA NTER VALUE NULL.
01 W& Sl MPLE- SI MPLEOBJECT- CCPY PQA NTER VALUE NULL.

PROCEDURE D'V SI ON

* Note that the object reference will have been created,
* for exanple, by a call to CBINEW
CALL "CBIDUP' USING W& S| MPLE- S| MPLECBIECT
W& S| MPLE- SI MPLECBIECT- OCPY.
SET W5 CBJIDUP TO TRUE.
PERFORM CHECK- STATUS.

301

CHAPTER 8 |

API Reference Details

OBJGETID

Synopsis

Usage

Description

Parameters

Exceptions

CBJCETI (i n PA NTER obj ect - r ef er ence,
out X(nn) object-id,
in 9(09) BINARY object-id-Iength)
/1 Retrieves the object IDfroman object reference.

Common to clients and servers.

The GBIGETI D function retrieves the object ID string from an object
reference. It is equivalent to calling POA : reference_to_idin C++.

The parameters for CBIGETI D can be described as follows:

obj ect-reference This is an i n parameter that contains the valid
object reference.

object-id This is an out parameter that is a bounded string
containing the object name relating to the specified
object reference. If this string is not large enough to
contain the object name, the returned string is
truncated.

obj ect -i d-1engt h This is an i n parameter that specifies the length of
the object name.

A OCRBA: : BAD PARAM : LENGTH_TQO SMALL exception is raised if the length of
the string containing the object name is greater than the obj ect-i d-1ength
parameter.

A OCRBA : BAD PARAM : | NVALI D GBJECT_I D exception is raised if an Orbix
2.3 object reference is passed.

A CCRBA : BAD | N\V_CRDER : SERVER NAME _NOT_SET exception is raised if
CRBSRWRis not called.

303

CHAPTER 8 | API Reference

Example The following is an example of how to use CBIGETI Din a client or server
program:

WRKI NG STCRAGE SECTI ON

01 W5 GBJECT- | DENTI FI ER- LEN PI CTURE 9(09) BI NARY VALLE O.
01 W& CBIECT- | DENTI FI ER PI CTURE X(20) VALUE SPACES.
01 W& CBIECT PQA NTER VALUE NULL.

PROCEDURE DI VI SI ON

* Note that the object reference will have been created, for
* exanple, by a call to CBINEW

MOVE 20 TO W5- GBIECT- | D- LENGTH
CALL "CBICETI D' USI NG W5- CBJECT
W&- CBJECT- | DENTI FI ER
WS- CBJECT- | DENTI FI ER- LEN
SET W5 CBJCGETI D TO TRUE
PERFCRM CHECK- STATUS.

Dl SPLAY "Cbject identifier string equals "
W& CBJECT- | D- STRI NG

304

API Reference Details

OBJIJNEW

Synopsis

Usage

Description

Parameters

CBINEWi n X(nn) server-nane,

in X(nn) interface-nane,

in X(nn) object-id,

out PA NTER obj ect - r ef er ence)
/1 Creates a unique object reference.

Server-specific.

The GBINEWfunction creates a unique object reference that encapsulates the
specified object identifier and interface names. The resulting reference can
be returned to clients to initiate requests on that object. It is equivalent to
calling POA : create reference with_idin C++.

The parameters for CBINEwcan be described as follows:

server - nane

i nt erface-name

object-id

obj ect -ref erence

This is an i n parameter that is a bounded string
containing the server name. This must be the same
as the value passed to GRBSRVR. This string must be
terminated by at least one space.

This is an i n parameter that is a bounded string
containing the interface name. This must be the
same as the value specified in the i dl renber nane
and i dI menber nanmeX copybooks (that is, of the form
I DL: nane: ver si on_nunber). This string must be
terminated by at least one space.

This is an i n parameter that is a bounded string
containing the object identifier name relating to the
specified object reference. This string must be
terminated by at least one space.

This is an out parameter that contains the created
object reference.

305

CHAPTER 8 | API Reference

Example

306

The example can be broken down as follows:
Consider the following IDL:

/1 1DL
nmodul e Sinpl e

interface SinpleChject
{

voi d

call _me();

}

Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following in the i dI menber name copybook (where i dI menber nare
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

WRKI NG STCRAGE SECTI ON

01 W& SERVER NAME Pl CTURE X(18) VALUE

"sinpl e_persistent "
01 W5 SERVER- NAME- LEN Pl CTURE 9(09) BI NARY VALLE 17.
01 WB- | NTERFACE- NAVE Pl CTURE X(28) VALUE

"IDL: Sinple/SinpleChject:1.0 ".

01 W& CBJECT- | DENTI FI ER Pl CTURE X(17) VALUE
"ny_si npl e_obj ect "

01 W5 SI MPLE- S| MPLEGBJIECT PO NTER VALUE NULL.

PROCEDURE DI VI SI O\

CALL " CBINEW USI NG W5- SERVER- NAME
WE- | NTERFACE- NAMVE
W5- CBJECT- | DENTI FI ER
W5- SI MPLE- S| MPLECBJECT.
SET W5 CBINEW TO TRUE
PERFCRM CHECK- STATUS.

Exceptions

API Reference Details

A OCRBA : BAD PARAM : | NVALI D_SERVER NAME exception is raised if the
server name does not match the server name passed to CRBSRVR.

A CCRBA: : BAD PARAM : NO CBJECT | DENTI FI ER exception is raised if the
parameter for the object identifier name is an invalid string.

A OCORBA: : BAD | NV_CRDER : | NTERFACE_NOT_REQ STERED exception is raised
if the specified interface has not been registered via CRBREG

A OCRBA: : BAD | N\V_CRDER : SERVER NAME _NOT_SET exception is raised if
CRBSRWRis not called.

307

CHAPTER 8 | API Reference

OBJREL

Synopsis

Usage

Description

Parameters

Example

308

CBJREL(i nout PQ NTER obj ect - r ef er ence)
/1 Rel eases an object reference.

Common to clients and servers.

The CBIREL function indicates that the caller will no longer access the object
reference. It is equivalent to calling GCRBA : rel ease() in C++. CBIREL
decrements the reference count of the object reference.

The parameter for GBIREL can be described as follows:

obj ect - ref erence This is an i nout parameter that contains the valid
object reference.

The following is an example of how to use CBJREL in a client or server
program:

WORKI NG STCRAGE SECTI ON
01 W5 SI MPLE- S| MPLECBIECT PQA NTER VALUE NULL.
01 W& SI MPLE- SI MPLECBIECT- CCPY PQA NTER VALUE NULL.

PRCCEDURE D'V SI ON

* Note that the object reference will have been created, for
* exanple, by a call to CBINEW

CALL "CBIDUP' USI NG W& S| MPLE- SI MPLEOBJECT

W&- S| MPLE- SI MPLECBIECT- CCPY.
SET W& CBJDUP TO TRUE.
PERFCRM CHECK- STATUS.

CALL "CBIREL" USI NG W& S| MPLE- SI MPLECBIECT- CCPY.
SET W& CBJREL TO TRUE.
PERFCRM CHECK- STATUS.

API Reference Details

See also T “OBJDUP” on page 301.
T “Object References and Memory Management” on page 393.

309

CHAPTER 8 | API Reference

OBJRIR

Synopsis GBJR R(in X(nn) desired-service,
out PQA NTER obj ect - r ef er ence)
/1 Returns an object reference to an object through which a
/1 service such as the Nam ng Service can be used.

Usage Common to clients and servers.

Description The GBIR Rfunction returns an object reference, through which a service
(for example, the Interface Repository or a CORBAservice like the Naming
Service) can be used. For example, the Naming Service is accessed by using
a desi red- servi ce string with the "NaneSer vi ce " value. It is equivalent to
calling CRB: : resol ve_i ni tial _services() in C++.

Table 26 shows the common services available, along with the COBOL
identifier assigned to each service. The COBOL identifiers are declared in the
QCRBA copybook.

Table 26: Summary of Common Services and Their COBOL Identifiers

Service COBOL ldentifier
InterfaceRepository | FR- SERVI CE
NameService NAM NG SERVI CE
TradingService TRADI NG SERVI CE

Not all the services available in C++ are available in COBOL. Refer to the
l'ist_initial_services function in the CORBA Programmeris Reference,
C++ for details of all the available services.

Parameters The parameters for CBIR R can be described as follows:
desi r ed- servi ce This is an i n parameter that is a string specifying
the desired service. This string is terminated by a
space.
obj ect - r ef erence This is an out parameter that contains an object

reference for the desired service.

310

API Reference Details

Example The example can be broken down as follows:
1. The following code is defined in the supplied GORBA copybook:

01 SERVI CE- REQUESTED Pl CTURE X(20)
VALUE SPACES.
88 | FR SERVI CE VALLE "I nterfaceRepository ".
88 NAM NG SERVI CE VALUE "NameServi ce ".
88 TRADI NG SERVI CE VALUE " Tr adi ngServi ce "

2. The following is an example of how to use GBJR Rin a client or server
program:

WORKI NG STCRAGE SECTI ON
01 W& NAVESERVI CE- CBJ PO NTER VALUE NULL.
PROCEDURE D'V SI ON

SET NAM NG SERVI CE TO TRUE

CALL "CGBIR R USI NG SERVI CE- REQUESTED
W& NAMESERVI CE- CBJ.

SET W& CBJRI R TO TRUE.

PERFCRM CHECK- STATUS.

Exceptions A OCRBA : GRB: : | nval i dNane exception is raised if the desi red- servi ce
string is invalid.

311

CHAPTER 8 | API Reference

OBJTOSTR

Synopsis

Usage

Description

312

CBJTOSTR(i n PA NTER obj ect - r ef er ence,

out PA NTER obj ect - string)
/1 Returns a stringified interoperable object reference (IR
/1 froma valid object reference.

Common to clients and servers.

The aBITGSTRfunction returns a string representation of an object reference.
It translates an object reference into a string, and the resulting value can
then be stored or communicated in whatever ways strings are manipulated.

A string representation of an object reference has an | CR prefix followed by
a series of hexadecimal octets. It is equivalent to calling
QOCRBA : CRB: : obj ect _to_string() in C++.

Because an object reference is opaque and might dif6(j 4(v fer)43(om one (ORn t()-6.7(he

API Reference Details

Example The following is an example of how to use CBITCSTRin a client or server
program:

WIRKI NG STCRAGE SECTI ON
01 W& Sl MPLE- S| MPLECBIECT
01 W5 I OR- PTR

01 W5- I OR-STR NG

01 W5-1 R LEN

PQ NTER VALUE NULL.

PQ NTER VALUE NULL.

PI CTURE X(2048) VALUE SPACES.
PI CTURE 9(09) BI NARY VALUE 2048.

PROCEDURE D'V S| ON

* Note that the object reference will have been created, for
* exanple, by a call to CBINEW

CALL "GBITGSTR' USI NG W5- SI MPLE- S| MPLECBIECT
W5 | CR- PTR

SET W5 GBJTGSTR TO TRUE

PERFCRM CHECK- STATUS.

CALL "STRCGET" USI NG W& | CR-PTR
W& | OR LEN

W5- | OR- STR NG
SET W5 STRGET TO TRUE.

PERFCRM CHECK- STATUS.

DI SPLAY "I nt eroper abl e obj ect reference (IR equals *
V& | OR STR NG

See also “STRTOOBJ” on page 367.

313

CHAPTER 8 | API Reference

ORBARGS

Synopsis

Usage

Description

314

CRBARGS(i n X(nn) argurent-string,
in 9(09) BINARY argunent-string-Iength,
in X(nn) orb-nane,
in 9(09) BINARY orb-nane-| ength)
// Initializes a client or server connection to an CRB.

Common to clients and servers.

The CRBARGS function initializes a client or server connection to the ORB, by
making a call to GCRBA : GRB_ i ni t () in C++. It first initializes an
application in the ORB environment and then it returns the ORB
pseudo-object reference to the application for use in future ORB calls.

Because applications do not initially have an object on which to invoke ORB
calls, CRB_i ni t () is a bootstrap call into the CORBA environment.
Therefore, the CRB i ni t () call is part of the GORBA module but is not part of
the QORBA: : CRB class.

The arg-1i st is optional and is usually not set. The use of the or b- nane is
recommended, because if it is not specified, a default ORB name is used.

Special ORB identifiers (indicated by either the or b- nane parameter or the

- CRBi d argument) are intended to uniquely identify each ORB used within

the same location domain in a multi-ORB application. The ORB identifiers

are allocated by the ORB administrator who is responsible for ensuring that
the names are unambiguous.

When you are assigning ORB identifiers via CRBARGS, if the or b- nane
parameter has a value, any - CRBi d arguments in the ar gv are ignored.
However, all other ORB arguments in ar gv might be significant during the
ORB initialization process. If the or b- name parameter is null, the ORB
identifier is obtained from the - GRBi d argument of ar gv. If the or b- nane is
null and there is no - CRBI d argument in ar gv, the default ORB is returned in
the call.

Parameters

ORB arguments

API Reference Details

The parameters for ORBARGS can be described as follows:

argunent -string This is an i n parameter that is a bounded string
containing the argument list of the
environment-specific data for the call. Refer to
“ORB arguments” for more details.

argurrent - stri ng-1 engt h This is an i n parameter that specifies the length of
the argument string list.

or b- nane This is an i n parameter that is a bounded string
containing the ORB identifier for the initialized
ORB, which must be unique for each server across
a location domain. However, client-side ORBs and
other "transient" ORBs do not register with the
locator, so it does not matter what name they are
assigned.

or b- name- | engt h This is an i n parameter that specifies the length of
the ORB identifier string.

Each ORB argument is a sequence of configuration strings or options of the
following form:

-CRBsuf fi x val ue

The suffix is the name of the ORB option being set. The value is the value to
which the option is set. There must be a space between the suffix and the
value. Any string in the argument list that is not in one of these formats is
ignored by the CRB i ni t () method.

Valid ORB arguments include:

- CRBboot _donai n val ueThis indicates where to get boot configuration

information.

- CRBdomai n val ue This indicates where to get the ORB actual
configuration information.

-CRBi d val ue This is the ORB identifier.

- CRBnane val ue This is the ORB name.

315

CHAPTER 8 | API Reference

Example The following is an example of how to use CRBARGS in a client or server
program:

WRKI NG STCRAGE SECTI ON

01 ARG LI ST PI CTURE X(01) VALUE SPACES

01 ARG LI ST-LEN PI CTURE 9(09) BI NARY VALUE 0.

01 CRB-NAME PI CTURE X(10) VALUE “si npl e_or b"
01 ORB- NAME- LEN PI CTURE 9(09) BI NARY VALUE 10.

PROCEDURE DI VI SI O\

DI SPLAY “Initializing the CRB'.

CALL "CRBARGS' USI NG ARG LI ST
ARG LI ST- LEN
CRB- NAME
CRB- NAMVE- LEN

SET W5 CRBARGS TO TRUE.

PERFORM CHECK- STATUS.

Exceptions A QCORBA: : BAD | N\V_CRDER : ADAPTER ALREADY_| NI Tl ALI ZED exception is
raised if CRBARGS is called more than once in a client or server.

316

API Reference Details

ORBEXEC

Synopsis

Usage

Description

CRBEXEQ(i n PA NTER obj ect -r ef erence,
in X(nn) operation-nane,
inout buffer operation-buffer,
inout buffer user-exception-buffer)
/1 Invokes an operation on the specified object.

Client-specific. (Batch clients only.)

The CRBEXEC function allows a COBOL client to invoke operations on the
server interface represented by the supplied object reference. All in and
inout parameters must be set up prior to the call. CRBEXEC invokes the
specified operation for the specified object, and marshals and populates the
operation buffer, depending on whether they are i n, out, i nout, or return
arguments.

As shown in the following example, the

317

CHAPTER 8 | API Reference

Example

318

oper ati on- buf f er This is an i nout parameter that contains a COBOL
01 level data item representing the data types that
the operation supports.

user - except i on- buf fer This is an i n parameter that contains the COBOL
representation of the user exceptions that the
operation supports, as defined in the
i dl menber nane copybook generated by the Orbix
E2A IDL compiler. If the IDL operation supports no
user exceptions, a dummy buffer is generated—this
dummy buffer is not populated on the server side,
and it is only used as the fourth (in this case,
dummy) parameter to CRBEXEC.

The example can be broken down as follows:
1. Consider the following IDL:

[/ 1DL
interface sanpl e

{
typedef string<10> Aboundedstri ng;

exception M/Exception {Aboundedstring except_str; };
Aboundedst ri ng nyoperation(in Aboundedstring instr,
i nout Aboundedstring inoutstr,
out Aboundedstring outstr)
rai ses(M/Exception);
b

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the i dIl menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 27: The idimembername Copybook (Sheet 1 of 3)

LEEEE SRR EEEEEEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEES

* Qperation: nyoper at i on

* Mapped nane: nyoper ati on

* Argunent s: <i n> sanpl e/ Aboundedstring instr

* <i nout > sanpl e/ Aboundedstri ng i noutstr
* <out > sanpl e/ Aboundedstring outstr

* Returns: sanpl e/ Aboundedst ri ng

*

User Exceptions: sanpl e/ M/Excepti on

API Reference Details

Example 27: The idimembername Copybook (Sheet 2 of 3)

Khkkhhkhkkkhhhhhkkhhhhhkkkkhhhhkhkkhhhhkhkhkkhhhkhkkkhhhhkkkhhhhkkkkkkk

* operation- buf fer
01 SAWPLE- MYCPERATI ON- ARGS.

03 I NSTR PI CTURE X(10).
03 | NQUTSTR PI CTURE X(10).
03 QUTSTR PI CTURE X(10).
03 RESULT PI CTURE X(10).

kkkkkhkhkhhhhhkhkhhhhhhkhkhhhhkhkhkhhhhhkhkhkhhhhhkhkhhhhkkkhhhkkkkhk

QCPY EXAMPLX.

LR EEEEEE R TR RS RS SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

LRSS S RS S SRS SRR SRR SRR EEEEEEEEEEEEEEEEESEEES

*

* (peration List section
* This lists the operations and attributes which an
* interface supports

*

LRSS RS S SRS RS SRR RS E R SRR EEEEEEEEEEEEEEEEEEEESS

* The operation-name and its corresponding 88 | evel entry

01 SAVPLE- CPERATI ON Pl CTURE X(27).
88 SAMWPLE- MYCPERATI ON VALUE
"nyoper at i on: | DL: sanpl e: 1. 0".
01 SAVPLE- CPERATI ON- LENGTH Pl CTURE 9(09)

Bl NARY VALUE 27.

khkkhkhkhkhhhhkhkhhhhhhkhhhhhkhkhkhhhhkkhkhhhhkkhkhhhhkkkhhhhkkkhx

*

* Typecode section

* This contains CDR encodi ngs of necessary typecodes.
*

LR R RS EEES]

01 EXAVPLE- TYPE PI CTURE X(29).
CCPY CORBATYP.
88 SAMPLE- ABOUNDEDSTR NG VALUE
"1 DL: sanpl e/ Aboundedst ri ng: 1. 0".
01 EXAVPLE- TYPE- LENGTH Pl CTURE S9(09)

Bl NARY VALUE 29.

LR R R R R R RS EEE]

* User exception bl ock

EEEE SRR RS RS RS EEE]

01 EX- SAVPLE- MYEXCEPTI ON Pl CTURE X(26)
VALUE

319

CHAPTER 8 | API Reference

Example 27: The idimembername Copybook (Sheet 3 of 3)

"| DL: sanpl e/ M/Excepti on: 1. 0".
01 EX- SAMPLE- MYEXCEPTI ON- LENGTH

* user exception buffer
01 EXAWPLE- USER- EXCEPTI ONS.
03 EXCEPTION-I D

03 D
88 D- NO USEREXCEPTI ON
88 D- SAVPLE- WEXCEPTI CN
03 U

03 EXCEPTI ON- SAMPLE- MYEXCEPTI CN
05 EXCEPT-STR

PI CTURE 9(09)
BI NARY VALUE 26.

PO NTER
VALUE NULL.

Pl CTURE 9(10) Bl NARY
VALLE 0.

VALLE 0.

VALLE 1.

Pl CTURE X(10)

VALUE LON VALLES,
REDEFI NES U,

Pl CTURE X(10).

3. The following is an example of how to use CRBEXECin a client program:

Example 28: Using ORBEXEC in the Client Program (Sheet 1 of 2)

WRKI NG STCRAGE SECTI ON
01 W& SAVPLE- CBJ
01 W& EXCEPT- | D- STR

PROCEDURE DI'VI S| ON

*The SAMPLE-(BJ will have been created
*With a previous call to api STRTOCBJ

SET SAMPLE- WWCPERATION TO TRUE
DI SPLAY "“invoking Sinple::"

* popul ate the in argurents

PO NTER VALUE NULL.
Pl CTURE X(200) VALUES SPACES.

SAMWPLE- CPERATI ON

MOVE "Hello " TO I NSTR CF SAMPLE- MYCPERATI ON- ARGS.

* popul ate the inout argurents

MOVE "Server " TO | NQUTSTR CF SAMVPLE- MYCPERATI ON- ARGS.

CALL " CRBEXEC! USI NG Ws- SAWPLE- CBJ
SAWPLE- CPERATI CN
SAWPLE- MYCPERATI ON- ARGS
SAWPLE- USER- EXCEPTI ONS.

SET W& CRBEXEC TO TRUE
PERFCRM CHECK- STATUS.
* check if user exceptions thrown

320

API Reference Details

Example 28: Using ORBEXEC in the Client Program (Sheet 2 of 2)

EVALUATE TRUE
WHEN D NO- USEREXCEPTI ON
* no exception
* check inout argunents
DI SPLAY "I n out paraneter returned equal s "
| NOUTSTR COF SAMPLE- MYCPERATI O\ ARGS
* check out argunents
Dl SPLAY "Qut paraneter returned equals "
QUTSTR CF SAMPLE- MYCPERATI O\ ARGS
* check return argunents
Dl SPLAY "Return paraneter returned equal s "
RESULT CF SAMPLE- MYCPERATI O\ ARGS
* WYEXCEPTI ON rasi ed by the server
WHEN D- SAMPLE- MYEXCEPTI ON
MOVE SPACES TO W5 EXCEPT- | D- STRI NG
*retrieve string value formthe exception-id pointer
CALL "STRCGET" USI NG EXCEPTI ON-1 D CF
SAWPLE- USER EXCEPTI CNS
EX- SAMPLE- MYEXCEPTI ONF LENGTH
W& EXCEPT- | D- STR NG
DI SPLAY "Exception id equals "
WB- EXCEPT- | D- STR NG

*Check the values of the returned exception which
*in this exanple is a bounded string

Dl SPLAY "Exception val ue retuned "

EXCEPT- STR CF EXAMPLE- USER EXCEPTI ONS

CALL "STRFREE' EXCEPTI ON-1 D CF SAMWPLE- USER- EXCEPTI ONS

SET W5 STRFREE TO TRUE
PERFORM CHECK- STATUS

* |nitialize for the next CRBEXEC cal |
SET D NO USEREXCEPTI ON TO TRUE
END- EVALUATE.

321

CHAPTER 8 | API Reference

Exceptions

See also

322

A OORBA : BAD | NV_CRDER : | NTERFACE_NOT_REQ STERED exception is raised
if the client tries to invoke an operation on an interface that has not been
registered via CRBREG.

A CORBA: : BAD PARAM : | N\VALI D DI SCR M NATCR TYPEQCDE exception is
raised if the discriminator typecode is invalid when marshalling a union
type.

A OCRBA : BAD_PARAM : UNKNOMN_CPERATI ON exception is raised if the
operation is not valid for the interface.

A OCRBA: : BAD_PARAM : UNKNOWN_TYPECCDE exception is raised if the typecode
cannot be determined when marshalling an any type or a user exception.

A CORBA: : DATA CONVERSI O\ : VALUE_ QUT_CF_RANGE exception is raised if the
value is determined to be out of range when marshalling a | ong, short,
unsi gned short, unsi gned | ong, | ong | ong, or unsi gned | ong | ong type.

I “COAGET” on page 281.
“COAPUT” on page 286.
The BANK demonstration in or bi xhl g. DEMOS. GCBCL. SRC for a complete
example of how to use CRBEXEC.

API Reference Details

ORBHOST

Synopsis

Usage

Description

Parameters

Example

CRBHOST(in 9(09) Bl NARY host narre-1 engt h,
out X(nn) host name)
/1l Returns the hostnanme of the server

Server-specific.

The GRBHOST function returns the hostname of the machine on which the
server is running.

Note: This is only applicable if TCP/IP is being used on the host machine.

The parameters for CRBEXEC can be described as follows:

host nare- | engt h This is an i n parameter that specifies the length of
the hostname.

host nane This is an out parameter that is a bounded string
used to retrieve the hostname.

The following is an example of how to use CRBHOST in a server program:

WORKI NG STCRAGE SECTI ON

01 HOST- NAME Pl CTURE X(255) .
01 HOST- NAME- LEN Pl CTURE 9(09) BI NARY
VALUE 255.

PROCEDURE DI'VI S| ON

CALL "CORBHCST" US| NG HOST- NAME- LENGTH
HOST- NAME.

SET W5 CRBHOST TO TRUE

PERFCORM CHECK- STATUS.

DI SPLAY "Host name equal s " HOST- NAME

323

CHAPTER 8 | API Reference

Exceptions A QCRBA: : BAD PARAM : LENGTH_TQO SMALL exception is raised if the length of
the string containing the hostname is greater than the host nane- | engt h
parameter.

324

API Reference Details

ORBREG

Synopsis

Usage

Description

Parameters

CRBREJi n buffer interface-description)
/] Describes an IDL interface to the GQCOBQL runti ne.

Common to clients and servers.

The CRBREGfunction registers an interface with the COBOL runtime, by using
the interface description that is stored in the i dI menber nameX copybook
generated by the Orbix E2A IDL compiler. Each interface within the IDL
member has a 01 level, which is the parameter to be passed to the CRBREG
call.

The Orbix 2000 IDL compiler generates a 01 level in the i dI menber nameX
copybook for each interface in the IDL member. Each 01 level that is
generated fully describes the interface to the COBOL runtime; for example,
the interface name, what it inherits from, each operation, its parameters and
user exceptions, and all the associated typecodes. The i dI nenber naneX
copybook cannot be amended by the user, because doing so can cause
unpredictable results at runtime.

You must call CRBREGfor every interface that the client or server uses.
However, it is to be called only once for each interface; therefore, you
should place the calls in the client and server mainline programs.

The parameter for CRBREG can be described as follows:

i nterface-descriptionThis is an i n parameter that contains the address of
the interface definition, which is defined as a 01
level in the i dI nenber naneX copybook.

325

CHAPTER 8 | API Reference

Example The example can be broken down as follows:
1. Consider the following IDL:

/1 1DL
nmodul e Sinpl e
{
interface SinpleChject
{
voi d
call _me();
}
s

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the i dI menber nameX copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

01 SI MPLE- SI MPLECBIECT- | NTERFACE

03 FILLER PI C X(160) VALUE X'0000005000000058C9CAD37
= " AE2899497938561E289949793850682918583A37AF14BF
- " 000000000040000000ECOCAD37AE2899497938561E2899
- " 49793850682918583A37AF14BFO000000001E289949793
= " 85D682918583A300FFFFFFO0000004COCAD37AE2899497
- " 938561E289949793850682918583A37AF14BFO00000000
- "180000000000000001838193936D948500000000000000
= "00000000000000000000" .

3. The following is an example of how to use CRBREGn a client or server
program:
WCRKI NG STCRAGE SECTI ON
CCPY S| MPLE.
PRCCEDURE DI M SI ON
* Register interface(s) after GRB initialization
DI SPLAY “Regi stering the Interface".
CALL "CRBREG' USI NG
S| MPLE- S| MPLECBIECT- | NTERFACE.

SET W5 CRBREG TO TRUE.
PERFCRM CHECK- STATUS

326

API Reference Details

Exceptions A OORBA : BAD | NV_CRDER : | NTERFACE_ALREADY_REQ STERED exception is
raised if the client or server attempts to register the same interface more
than once.

327

CHAPTER 8 | API Reference

ORBSRVR

Synopsis

Usage

Description

Parameters

Example

Exceptions

328

CRBSRVR(i n X(nn) server-nane,
in 9(09) BINARY server-nane-| ength)
I/ Sets the server nanme for the current server process.

Server-specific.

The ORBSRVR function sets the server name for the current server. This
should be contained in the server mainline program, and should be called
only once, after calling CRBARGS.

The parameters for CRBSRVR can be described as follows:
server - nane This is an i n parameter that is a bounded string
containing the server name.

server-nane-length This is an i n parameter that specifies the length of
the string containing the server name.

The following is an example of how to use CRBSRVR in a server program:

WIRKI NG STORAGE SECTI ON
01 SERVER- NAME Pl CTURE X(17) VALUE "sinpl e_persistent".
01 SERVER NAME- LEN Pl CTURE 9(09) BI NARY VALUE 17.

PRCCEDURE D'MVI SI ON

* After ORBARGS call.
CALL "CRBSRVR' USI NG SERVER- NAME
SERVER- NAME- LEN
SET W& CRBSRVR TO TRUE
PERFCRVI CHECK- STATUS.

A OCRBA: : BAD | N\V_CRDER : SERVER NAME ALREADY_SET exception is raised if
CRBSRWR is called more than once.

API Reference Details

ORBSTAT

Synopsis

Usage

Description

Parameters

CRBSTAT(in buffer status-buffer)
/1l Registers the status information bl ock.

Common to both clients and servers.

The CRBSTAT function registers the supplied status information block to the
COBOL runtime. The status of any COBOL runtime call can then be
checked, for example, to test if a call has completed successfully.

The CORBI X- STATUS- | NFORVATI ON structure is defined in the supplied CORBA
copybook. A GKERRS (for batch) or CERRSMFA (for IMS or CICS) copybook is
also provided, which contains a GHECK- STATUS function that can be called
after each API call, to check if a system exception has occurred.
Alternatively, this can be modified or replaced for the system environment.

You should call CRBSTAT once, as the first API call, in your server mainline
and client programs. If it is not called, and an exception occurs at runtime,
the application terminates with the following message:

An exception has occurred but ORBSTAT has not been call ed.
Pl ace the CRBSTAT APl call in your application, conpile and
rerun. Exiting now

The parameters for CRBSTAT can be described as follows:

stat us-buffer This is an i n parameter that contains a COBOL 01
level data item representing the status information
block defined in the CORBA copybook. This buffer is
populated when a CORBA system exception occurs
during subsequent API calls. Refer to “Definition of
status information block” for more details of how it
is defined.

329

CHAPTER 8 | API Reference

Definition of status information CRBI X- STATUS- | NFCRVATI ON is defined in the OCRBA copybook as follows:
block

Example 29: ORBIX-STATUS-INFORMATION Definition (Sheet 1 of 2)

*

** This data itemmust be originally set by calling the

** CRBSTAT api .

** This data itemis then used to determne the status of

** each api called (eg COACET, CRBEXEQ .

* %

** If the call was successful then OCRBA- EXCEPTI ON and

** OCRBA-MNCR CCDE will be both set to 0 and

** OOMPLETI ON- STATUS- YES wi | | be set to true.

* %

** EXCEPTIONTEXT is a pointer to the text of the exception.
** STRCGET nust be used to extract this text.

** (Refer to GHKERRS or CERRSMFA Copybooks for nore details).

*

01 CRBI X- STATUS- | NFCRVATI ON | S EXTERNAL.

03 CCORBA- EXCEPTI ON Pl CTURE 9(5) BI NARY.
88 CCORBA- NO- EXCEPTI ON VALUE 0.
88 CCORBA- UNKNO/W VALLE 1.
88 CCRBA- BAD- PARAM VALUE 2.
88 CCORBA- NO- MEMCRY VALUE 3.
88 CORBA-I MP-LIMT VALLE 4.
88 CCRBA- COWM FAI LURE VALUE 5.
88 CCORBA- | Nv- CBIREF VALUE 6.
88 CCORBA- NO PERM SSI ON VALLE 7.
88 CCORBA- | NTERNAL VALUE 8.
88 CORBA- VARSHAL VALLE 9.
88 CORBA-I NI TI ALI ZE VALLE 10.
88 CCRBA- NO- | MPLEMENT VALUE 11.
88 CCRBA- BAD- TYPECCDE VALLE 12.
88 CORBA- BAD- CPERATI ON VALLE 13.
88 CCRBA- NO- RESOURCES VALUE 14.
88 CORBA- NO- RESPONSE VALUE 15.
88 CORBA- PERSI ST- STCRE VALLE 16.
88 OCRBA- BAD- | NV- CRDER VALUE 17.
88 CORBA- TRANS| ENT VALLE 18.
88 CORBA- FREE- MEM VALLE 19.
88 OCRBA- | Nv- | DENT VALUE 20.
88 CCRBA- | NV- FLAG VALUE 21.
88 CORBA- | NTF- REPCS VALLE 22.
88 OCRBA- BAD- CONTEXT VALUE 23.
88 CORBA- CBJ- ADAPTER VALLE 24.

330

API Reference Details

Example 29: ORBIX-STATUS-INFORMATION Definition (Sheet 2 of 2)

88 CORBA- DATA- CONVERSI ON VALLE 25.
88 CORBA- CBJECT- NOT- EXI ST VALLE 26.
88 CORBA- TRANSACTI ON- REQUI RED VALLE 27.
88 CORBA- TRANSACTI ON- ROLLEDBACK VALLE 28.
88 CORBA- | NVALI D- TRANSACTI ON VALLE 29.

88 CORBA- | Nv- PCLI CY VALLE 30.
88 CORBA- REBI ND VALLE 31.
88 CORBA- TI MEQUT VALLE 32.
88 CORBA- TRANSACTI ON- UNAVAI LABLE VALLE 33.
88 (CORBA- TRANSACTI ON- MODE VALLE 34.
88 CORBA- BAD- Q05 VALLE 35.
88 (CORBA- CCDESET- | NCOWPATI BLE VALLE 36.
03 COWPLETI ON- STATUS Pl CTURE 9(5) BI NARY
88 COWPLETI ON- STATUS- YES VALLE 0.
88 COMPLETI ON- STATUS- NO VALLE 1.
88 COMPLETI ON- STATUS- VAYBE VALLE 2.
03 EXCEPTI ON-M NCR- CCDE Pl CTURE S9(10) Bl NARY

03 EXCEPTI ON NUVBER REDEFI NES EXCEPTI ON- M NOR- OCDE
PI CTURE S9(10) Bl NARY.
03 EXCEPTI ON-TEXT USAGE | S PO NTER

331

CHAPTER 8 | API Reference

Example The following is an example of how to use CRBSTAT in a server mainline or
client program:

WRKI NG STCRAGE SECTI ON
QCPY CCRBA

PROCEDURE DI M SI ON
CALL "CORBSTAT" USI NG CRBI X- STATUS- | NFCRVATI N
D SPLAY "Initializing the CRB'.

CALL "CORBARGS' USING ARG LI ST
ARG LI ST- LEN
CRB- NAME
CRB- NAME- LEN

SET W5 CRBARGS TO TRUE

PERFCRM CHECK- STATUS.

EXI T- PRG
STCP RUN

OCPY GKERRS.

Note: The OOPY CHKERRS statement in the preceding example is used in
batch programs. It is replaced with CoPY CERRSMFA in IMS or CICS server
programs.

Exceptions A OORBA : BAD | NV_CRDER : STAT_ALREADY_CALLED exception is raised if
CRBSTAT is called more than once with a different
CRBI X- STATUS- | NFORVATI ON block.

332

API Reference Details

ORBTIME

Synopsis

Usage

Description

Parameters

CRBTI ME(i n 9(04) BI NARY tinmeout-type

in 9(09) BINARY tineout-val ue)
/1 Used by clients for setting the call timeout.
/1 Used by servers for setting the event tineout.

Common to clients and servers. (Batch only.)

The CRBTI ME function provides:

I Call timeout support to clients. This means that it specifies how long
before a client should be timed out after having established a
connection with a server. The value only comes into effect after the
connection has been established.

I Event timeout support to servers. This means that it specifies how long
a server should wait between connection requests.

The parameters for CRBTI ME can be described as follows:

timeout -t ype This is an i n parameter that determines whether
call timeout or event timeout functionality is
required. It must be set to one of the two values
defined in the OCORBA copybook for the
CRBI X- TI MEQUT- TYPE. In this case, value 1
corresponds to event timeout, and value 2
corresponds to call timeout.

ti meout - val ue This is an i n parameter that specifies the timeout
value in milliseconds.

333

CHAPTER 8 | API Reference

Server example On the server side, CRBTI ME must be called immediately before calling
OOARWN. After COARWN has been called, the event timeout value cannot be
changed. For example:

01 W& TI MEQUT- VALUE Pl CTURE 9(09) Bl NARY VALLE 0.
PROCEDURE DIV SI N

*set the timeout value to two m nutes

MOVE 120000 TO W& TI MEQUT- VALUE

SET EVENT-TI MEQUT TO TRUE

CALL "CRBTI ME' USI NG CRBI X- TI MEQUT- TYPE
W& Tl MEQUT- VALUE.

SET W5 CRBTI ME TO TRUE

PERFCRM CHECK- STATUS.

CALL "COARWN'.

Client example On the client side, CRBTI ME must be called before calling CRBEXEC. For
example:

*set the tineout value to two m nutes

MOVE 120000 TO W& TI MEQUT- VALUE

SET CALL- TI MEQUT TO TRUE.

CALL "CRBTI ME' USI NG CRBI X- TI MEQUT- TYPE
W& TI MEQUT- VALUE

SET W& CRBTI ME TO TRIE

PERFCRM CHECK- STATUS.

CALL " CRBEXEC'

Exceptions A OCRBA : BAD PARAM : | NVALI D _TI MEQUT_TYPE exception is raised if the
ti meout - t ype parameter is not set to one of the two values defined for
CRBI X- TI MEQUT- TYPE in the QORBA copybook.

334

API Reference Details

SEQALLOC

Synopsis

Usage

Description

Parameters

SEQALLOO(i n 9(09) BI NARY sequence-si ze,
in X(nn) typecode-key,
in 9(09) BINARY typecode-key-I|ength,
i nout buffer sequence-control -data)
/1 Alocates nenory for an unbounded sequence

Common to clients and servers.

The SEQaLLGC function allocates initial storage for an unbounded sequence.
You must call SEQALLCC before you call SEQSET for the first time. The length
supplied to the function is the initial sequence size requested. The typecode
supplied to SEQALLOC must be the sequence typecode.

Note: You can use SEQALLOC only on unbounded sequences.

The parameters for SEQALLQOC can be described as follows:

sequence- si ze

t ypecode- key

t ypecode- key- | engt h

This is an i n parameter that specifies the maximum
expected size of the sequence.

This is an i n parameter that contains a 01 level
data item representing the typecode key, as defined
in the i dl menber nane copybook generated by the
Orbix E2A IDL compiler. This is a bounded string.

This is an i n parameter that specifies the length of
the typecode key, as defined in the i dI menber nane
copybook generated by the Orbix E2A IDL compiler.

sequence- control -dat aThis is an i nout parameter that contains the

unbounded sequence control data.

Note: The typecode keys are defined as level 88 data items in the
i dl mrenber nane copybook generated by the Orbix E2A IDL compiler.

335

CHAPTER 8 | API Reference

Example The example can be broken down as follows:
1. Consider the following IDL:

/1 1DL
interface exanpl e

{

typedef sequence<l ong> unboundedseq;
unboundedseq nyop() ;
s

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the i dI menber name copybook (where i di menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 30: The idimembername Copybook (Sheet 1 of 2)

B R R R

* Qperation: nyop
* Mapped narre: nyop
* Argunents: None
* Returns: exanpl e/ unboundedseq

* User Exceptions: none

hhkkhhkhhkhhhhhhhkhkhhhhhkhkkhhhhkkkhhhhkhkkhhhkkkkhhhhkhkkhhhhkkkkhkk

01 EXAVPLE- MYCP- ARGS.

03 RESULT- 1.
05 RESULT Pl CTURE S9(10) Bl NARY.
03 RESULT- SEQUENCE.
05 SEQUENCE- MAXI MUM Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- LENGTH PI CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- BUFFER PQ NTER
VALUE NULL.
05 SEQUENCE- TYPE PQ NTER
VALUE NULL.

LEEEE RS EEEE RS EEEEEEE SRR SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
*

* Qperation List section

* This lists the operations and attributes which an

* interface supports
*

LR RS E RS EEEEE S EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

01 EXAVPLE- CPERATI ON Pl CTURE X(21).

336

API Reference Details

Example 30: The idimembername Copybook (Sheet 2 of 2)

88 EXAWPLE- WCP VALUE
"nyop: | DL: exanpl e: 1. 0".
01 EXAVPLE- CPERATI ON- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 21.

LR EEE SRR E RS RS EEE]

*

* Typecode section
* This contains CDR encodi ngs of necessary typecodes.

*

LRSS S RS S S SRR S S S EEEEEE R SRR SRR R SRR EEEEEEEESEEES

01 EXAWPLE- TYPE PI CTURE X(28).
QCPY CORBATYP.
88 EXAVPLE- UNBOUNDEDSEQ VALUE
"1 DL: exanpl e/ unboundedseq: 1. 0".
88 EXAWPLE VALUE
"1 DL: exanpl e: 1. 0".
01 EXAVPLE- TYPE- LENGTH Pl CTURE S9(09)

Bl NARY VALUE 28.

3. The following is an example of how to use SEQALLCC in a client or
server program:

Example 31:Using SEQALLOC in Client or Server (Sheet 1 of 2)

WORKI NG STCRAGE SECTI ON

01 V& MAX- ELEMENTS Pl CTURE 9(09) Bl NARY
VALUE 10.

01 \\&- QURRENT- ELEMENT Pl CTURE 9(09) Bl NARY
VALLE 0.

DO EXAMPLE- WYCP.
CALL "OOAGET" USI NG EXAVPLE- MYCP- ARGS.
SET W& CQACET TO TRUE
PERFORM CHECK- STATUS.

* initialize the maxi mumand length fiel ds.

* MOVE W5- VAX- ELEMENTS TO SEQUENCE- MAXI MUM CF

MOVE O TO SEQUENCE- MAXI MM CF
EXAMPLE- MYCP- ARGS.
MOVE O TO SEQUENCE- LENGTH CF

EXAMPLE- MYCP- ARGS.
* Initialize the sequence el enent data

MOVE O TO RESULT CF
RESULT-1 CF

337

CHAPTER 8 | API Reference

Example 31: Using SEQALLOC in Client or Server (Sheet 2 of 2)

EXAMPLE- MYCP- ARGS.
set the typecode of the sequence
SET EXAMPLE- UNBOUNDEDSEQ TO TRUE
Al ocate nenory for the unbounded sequence.
* NOTE: SEQUENCE-NAXIMMis set to W5 MAX- ELEMENTS af t er
* SEQALLQC cal |
CALL "SEQALLCC' USI NG W5 MAX- ELEMENTS
EXAVPLE- TYPE
EXAMPLE- TYPE- LENGTH
RESULT- SEQUENCE CF
EXAVPLE- MYCP- ARGS.
SET W& SEQALLCC TO TRUE
PERFCORM CHECK- STATUS.
* Now ready to popul ate the seqeunce see SEQSET

B R

* Check Errors Copybook

EEEEE S E R RS EEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

CCPY GHKERRS.

*

*

Note: The OCPY GKERRS statement in the preceding example is used in
batch programs. It is replaced with GoPY CERRSMFA in IMS or CICS server

programs.

Exceptions A OORBA: : NO_ MEMIRY exception is raised if there is not enough memory
available to complete the request. In this case, the pointer will contain a null
value.

A CCRBA: : BAD PARAM : | NVALI D_SEQUENCE exception is raised if the sequence
has not been set up correctly.

See also T “SEQFREE” on page 344.
T “Unbounded Sequences and Memory Management” on page 385.

338

API Reference Details

SEQDUP

Synopsis

Usage

Description

Parameters

Example

SECDUP(i n buffer sequence-control -data,
out buffer dupl-seqg-control -data)
/1 Duplicates an unbounded sequence control bl ock.

Common to clients and servers.

The SEQDUP function creates a copy of an unbounded sequence. The new
sequence has the same attributes as the original sequence. The sequence
data is copied into a newly allocated buffer. The program owns this
allocated buffer. When this buffer is no longer required, you must call
SEQFREE to free the memory allocated to it.

You can call SEQDUP only on unbounded sequences.

The parameters for SEQDUP can be described as follows:

sequence- control -dat aThis is an i n parameter that contains the
unbounded sequence control data.

dupl - seg-control -dat aThis is an out parameter that contains the
duplicated unbounded sequence control data block.

The example can be broken down as follows:
1. Consider the following IDL:

interface exanpl e

{

typedef sequence<l| ong> unboundedseq;
unboundedseq nyop();

339

CHAPTER 8 | API Reference

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 32: The idimembername Copybook (Sheet 1 of 2)

EEEEEE R S S SR SRR S S SRR E SRR S SRR RS R R R RS SRR EE R SRR EEEEEEEE S

* Qperation: nyop
* Mapped nane: nyop
* Argunents: None
* Returns: exanpl e/ unboundedseq

* User Exceptions: none
EEEEEE RS S SR SRS S SRR S SRR RS R SRR RS SRR EEE SRR EEEEEEEE S

01 EXAVPLE- MYCP- ARGS.

03 RESULT-1.
05 RESULT PI CTURE S9(10) BI NARY.
03 RESULT- SEQUENCE.
05 SEQUENCE- MAXI MUM PI CTURE 9(09) BI NARY
VALUE 0.
05 SEQUENCE- LENGTH PI CTURE 9(09) BI NARY
VALUE 0.
05 SEQUENCE- BUFFER PQ NTER
VALUE NULL.
05 SEQUENCE- TYPE PQ NTER
VALUE NULL.

EEEEE SRR EE RS RS EEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEES

*

* (peration List section
* This lists the operations and attributes which an

* interface supports
*

LR EEE RS EEEE RS RS EEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEESS

01 EXAMVPLE- CPERATI CN PI CTURE X(21).
88 EXAWPLE- MYCP VALUE
“nyop: | DL: exanpl e: 1. 0".
01 EXAVPLE- CPERATI O\ LENGTH Pl CTURE 9(09) Bl NARY
VALUE 21.

Khkkhhhkhkhkhhhhhkkkhhhhkhkkhhhkkkkhhhhkkkhhhhkkkhkhhhhkkkhhhhkkkhkk

*

* Typecode section

* This contai ns COR encodi ngs of necessary typecodes.
*

khkkkkkhkkhkhkhkkkhkkhkhhkhkhkhhkhhhkhkhhkhhhkhkhkhkhhhhkhhkhhhhkhkhkhhhhkhkkhhhhhkhkkkhkxx

340

API Reference Details

Example 32: The idimembername Copybook (Sheet 2 of 2)

01 EXAWPLE- TYPE Pl CTURE X(28).
QOCPY CORBATYP.
88 EXAVPLE- UNBOUNDEDSEQ VALUE
"1 DL: exanpl e/ unboundedseq: 1. 0".
88 EXAWPLE VALUE
"1 DL: exanpl e: 1. 0".
01 EXAMPLE- TYPE- LENGTH Pl CTURE S9(09) BI NARY
VALUE 28.

3. The following is an example of how to use SEQDUP in a client or server
program:

Example 33: Using SEQDUP in Client or Server (Sheet 1 of 2)

WRKI NG STCRAGE SECTI ON

01 V& QURRENT- ELEMENT Pl CTURE 9(09) Bl NARY
VALLE 0.
01 V& ARGS,
03 OOPI ED- 1.
05 Q0PI ED- VALUE Pl CTURE S9(10) Bl NARY.
03 OOPI ED- SEQUENCE.
05 SEQUENCE- MAXI MUM Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- BUFFER PO NTER
VALUE NULL.
05 SEQUENCE- TYPE PO NTER
VALUE NULL.

PROCEDURE D'V SI ON

CALL "CORBEXEC' US| NG EXAWPLE- CBJ
EXAMPLE- CPERATI ON
EXAMPLE- MYCP- ARGS
EXAMPLE- USER- EXCEPTI ONS.
SET W5 CRBEXEC TO TRUE
PERFCRM CHECK- STATUS.
* Make a copy of the unbounded sequence
CALL "SEQDUP" USI NG RESULT- SEQUENCE CF
EXAMPLE- MYCP- ARGS
QCPl ED- SEQUENCE OF
V- ARGS.
SET W5 SEQDUP TO TRUE

341

CHAPTER 8 | API Reference

Example 33: Using SEQDUP in Client or Server (Sheet 2 of 2)

PERFCRM CHECK- STATUS.

Rel ease the menory allocated by SEQALLCC

Refer to nenory managenent chapter on when to call this
api. * NOTE The SEQUENCE- MAXI MMM and SEQUENCE- LENGTH
are not initialized.

E I

CALL " SEQFREE' USI NG RESULT- SEQUENCE CF
EXAMPLE- MYCP- ARGS.

SET W& SECGFREE TO TRUE

PERFCRM CHECK- STATUS.

* Get each of the 10 el ements in the copied sequence.
PERFCRM VARYI NG W5- CURRENT- ELEMENT
FROM 1 BY 1 UNTI L
W& QURRENT- ELEMENT >
SEQUENCE- LENGTH CF
W& ARGS
* Get the current elenent in the copi ed sequence
CALL " SEQCET" USI NG OCPlI ED- SEQUENCE CF
VB ARGS
W\B- CURRENT- ELEMENT
CCPI ED- VALUE CF
CCPIED- 1 OF
VB ARGS
SET W5 SEQGET TO TRUE
PERFCRM CHECK- STATUS
Dl SPLAY "H erment data val ue equal s "
CCPI ED- VALUE CF
CCPIED- 1 OF
VB ARGS

EEEEE SRR EES

* Check Errors Copybook

EEEEE RS EEEE RS EEE RS SR SRR SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEESS

CCPY GKERRS.

342

API Reference Details

Note: The OCPY CHKERRS statement in the preceding example is used in
batch programs. It is replaced with acPY CERRSMFA in IMS or CICS server
programs.

Exceptions A CCRBA: : BAD PARAM : | NVALI D_SEQUENCE exception is raised if the sequence
has not been set up correctly.

See also T “SEQFREE” on page 344.
T “Unbounded Sequences and Memory Management” on page 385.

343

CHAPTER 8 | API Reference

SEQFREE

Synopsis

Usage

Description

Parameters

Example

344

SEQFREE(i nout buf fer sequence-control -dat a)
/1 Frees the nenory allocated to an unbounded sequence.

Common to clients and servers.

The SEQFREE function releases storage assigned to an unbounded sequence.
(Storage is assigned to a sequence by calling SEQALLCC.) Do not try to use
the sequence again after freeing its memory, because doing so might result
in a runtime error.

You can use SEQFREE only on unbounded sequences. Refer to the “Memory
Handling” on page 383 for details of when it should be called.

The parameter for SEQGFREE can be described as follows:

sequence-control -data This is an i nout parameter that contains the
unbounded sequence control data.

The example can be broken down as follows:
1. Consider the following IDL:

/1 1DL

interface exanpl e

{
typedef sequence<l ong> unboundedseq;
unboundedseq nyop();

}s

API Reference Details

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 34: The idimembername Copybook (Sheet 1 of 2)

LR EEE SRR EE SRS EEE]

* Qperation: nyop
* Mapped narre: nyop
* Argunents: None
* Returns: exanpl e/ unboundedseq

* User Exceptions: none

LR EEEEEE RS E RS EE RS EEE]

01 EXAWPLE- MYCP- ARGS.

03 RESWLT-1.
05 RESULT Pl CTURE S9(10) Bl NARY.
03 RESULT- SEQUENCE
05 SEQUENCE- MAXI MM Pl CTURE 9(09) BI NARY
VALLE 0.
05 SEQUENCE- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- BUFFER PQ NTER
VALUE NULL.
05 SEQUENCE- TYPE PQ NTER
VALUE NULL.

khkkhkkhkhkhkhhhhkhkhhhhhkkhkhhhhhkhkhhhhhhkhkkhhhhkhkkhhhhkkkhhhhkkkkhhkx

*

* peration List section
* This lists the operations and attributes which an
* interface supports

*

Khkkhkhkhkhhhhhkhkhhhhhkkhkhhhhhkhkhkhhhhhkhkkhhhkhkkkhhhhkkkhhhhkkkkkkk

01 EXAVPLE- CPERATI ON Pl CTURE X(21).
88 EXAWPLE- MYCP VALUE
"nyop: | DL: exanpl e: 1. 0".
01 EXAVPLE- CPERATI ON- LENGTH Pl CTURE 9(09) BI NARY
VALUE 21.

Khkkhkkhkkhkhhhhkhkhhhhhkkkhhhhhkhkkhhhhkhkkkhhhkkkhhhhkhkkkhhhhkkkkhhkk

*

* Typecode section

* This contai ns CDR encodi ngs of necessary typecodes.
*

LR R R R R RS E R E R R R R R R EEEE R EEEEEEEEEEEEEEEEEEEEE]

01 EXAMPLE- TYPE Pl CTURE X(28).

345

CHAPTER 8 | API Reference

Example 34: The idimembername Copybook (Sheet 2 of 2)

QCPY CCORBATYP.
88 EXAVPLE- UNBOUNDEDSEQ VALUE
"1 DL: exanpl e/ unboundedseq: 1. 0".
88 EXAWPLE VALUE
"1 DL: exanpl e: 1. 0".
01 EXAVPLE- TYPE- LENGTH Pl CTURE S9(09)

Bl NARY VALUE 28.

3. The following is an example of how to use SEGFREE in a client or server
program:

WIRKI NG STCRAGE SECTI ON

01 W5 MAX- ELEMENTS Pl CTURE 9(09) Bl NARY
VALLE 10.

01 WB- CURRENT- ELEMENT Pl CTURE 9(09) Bl NARY
VALLE 0.

* Rel ease the memory all ocated by SEQALLCC
* Refer to nenory managenent chapter on when to call this
* api .
* NOTE: The SEQUENCE- MAXI MM and SEQUENCE- LENGTH ar e
* not initialized.
CALL "SEQFREE' USI NG RESULT- SEQUENCE CF
EXAVPLE- MYCP- ARGS.
SET W5 SEQFREE TO TRUE
PERFCRM CHECK- STATUS.

R SRR R SRR RS SRS EE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEES]

* Check Errors Copybook

khkkhkhhhkhkkhkhhhhkkkhhhhkkkhhhhkhkhkkhhhhkhkkhhhhhkhkkhhhhkkkkhhhhkkk k%

QCPY GHKERRS.

Note: The OOPY CHKERRS statement in the preceding example is used in
batch programs. It is replaced with coPY CERRSMFA in IMS or CICS server
programs.

See also “Unbounded Sequences and Memory Management” on page 385.

346

API Reference Details

SEQGET

Synopsis

Usage

Description

Parameters

Example

SEQGET(i n sequence sequence-control -dat a,
in 9(09) BINARY el enent - nunber,
out buffer sequence-data)
/1 Retrieves the specified el ement froman unbounded sequence.

Common to clients and servers.

The SEQEET function provides access to a specific element of an unbounded
sequence. The data is copied from the specified element into the supplied
data area (that is, into the sequence- dat a parameter).

You can use SEQGET only on unbounded sequences.

The parameter for SEQEET can be described as follows:
sequence- control -dat a This is an i n parameter that contains the
unbounded sequence control data.

el enent - nunber This is an i n parameter that specifies the index of
the element number to be retrieved.

sequence- dat a This is an out parameter that contains the buffer to
which the sequence data is to be copied.

The example can be broken down as follows:
1. Consider the following IDL:

/1 1DL
interface exanpl e

{

typedef sequence<l| ong> unboundedseq;
unboundedseq nyop();
IE

347

CHAPTER 8 | API Reference

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the i dIl menber name copybook (where i di menber nare
represents the (possibly abbreviated) name of the IDL member that

contains the IDL definitions):

Example 35: The idimembername Copybook (Sheet 1 of 2)

EEEEEE R S S SR SRR S S SRR E SRR S SRR RS R R R RS SRR EE R SRR EEEEEEEE S

* Qperation: nyop
* Mapped nane: nyop
* Argunents: None

348

Exceptions

API Reference Details

Example 35: The idimembername Copybook (Sheet 2 of 2)

88 EXAVPLE- UNBOUNDEDSEQ VALUE
"1 DL: exanpl e/ unboundedseq: 1. 0".
88 EXAVPLE VALUE

"1 DL: exanpl e: 1. 0".

01 EXAWPLE- TYPE- LENGTH Pl CTURE S9(09)

Bl NARY VALUE 28.

The following is an example of how to use SEQEET in a client or server
program:

WIORKI NG STCRAGE SECTI ON

01 W5 MAX- ELEMENTS Pl CTURE 9(09) Bl NARY
VALLE 10.

01 WB- CURRENT- ELEMENT Pl CTURE 9(09) Bl NARY
VALUE 0.

CALL " CRBEXEC' USI NG EXAMPLE- CBJ
EXAMPLE- CPERATI ON
EXAMPLE- MYCP- ARGS
EXAMPLE- USER- EXCEPTI O\S.
SET W5- CRBEXEC TO TRUE
PERFCRM CHECK- STATUS.
* Get each of the 10 el enents in the sequence.
PERFCRM VARYl NG W5- CURRENT- ELEMVENT
FROM1 BY 1 WNTIL
WB- CURRENT- ELEMENT >
SEQUENCE- LENGTH CF
EXAMPLE- MYCP- ARGS
* CGet the current el ement
CALL "SEQGET" USI NG RESULT- SEQUENCE CF
EXAMPLE- MYCP- ARGS
WB- CURRENT- ELEMENT
RESULT CF
RESULT-1 CF
EXAMPLE- MYCP- ARGS
SET W5 SEQCET TO TRUE

A OCRBA: : BAD PARAM : | NVALI D_SEQUENCE exception is raised if the sequence
has not been set up correctly.

A QCRBA: : BAD PARAM : | NVALI D_BOUNDS exception is raised if the element to
be accessed is either set to 0 or greater than the current length.

349

CHAPTER 8 | API Reference

SEQSET

Synopsis

Usage

Description

Parameters

Example

350

SEQBET(out buf fer sequence-control -dat a,

in 9(09) BINARY el enent - nunber,

in buffer sequence-data)
Il Pl aces the specified data into the specified el enent of an
/1 unbounded sequence.

Common to clients and servers.

The SEQSET function copies the supplied data into the requested element of
an unbounded sequence. You can set any element ranging between 1 and
the maximum size of a sequence plus one. If the current maximum element
plus one is set, the sequence is then reallocated, to hold the enlarged
sequence.

Note: You can call SEQSET only on unbounded sequences.

The parameters for SEQSET can be described as follows:

sequence-control -data This is an i n parameter that contains the
unbounded sequence control data.

el enent - nunber This is an i n parameter that specifies the index of
the element number that is to be set.

sequence- dat a This is an i n parameter that contains the address
of the buffer containing the data that is to be
placed in the sequence.

1. Consider the following IDL:

/] 1DL
i nterface exanpl e

{

typedef sequence<l ong> unboundedseq;
unboundedseq nyop();

API Reference Details

Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

Example 36: The idimembername Copybook (Sheet 1 of 2)

LRSS R RS S S S SRS S SRS RS S SRS S SRR E R R SRR EEEEEEEESEEEES

*

*

*

*

*

Qper at i on: nyop
Mapped nare: nyop
Argunent s: None
Ret ur ns: exanpl e/ unboundedseq

User Exceptions: none

LRSS R RS S S S SRS S SRR S SRS EE RS E R R R EEEEEEEEEEEEEEEES

01 EXAWPLE- MYCP- ARGS.

03 RESWLT-1.
05 RESULT Pl CTURE S9(10) Bl NARY.
03 RESULT- SEQUENCE
05 SEQUENCE- M&XI MM Pl CTURE 9(09) Bl NARY
VALLE 0.
05 SEQUENCE- LENGTH Pl CTURE 9(09) Bl NARY
VALUE 0.
05 SEQUENCE- BUFFER PQ NTER
VALUE NULL.
05 SEQUENCE- TYPE PQ NTER
VALUE NULL.

LR EEEEEEE R EEE RS EEE]

*

*

*

*

*

(peration List section
This lists the operations and attributes which an
interface supports

LR R RS EEES]

01 EXAWPLE- CPERATI ON Pl CTURE X(21).
88 EXAWPLE- WYCP VALUE
"nyop: | DL: exanpl e: 1. 0".
01 EXAVPLE- CPERATI ON- LENGTH Pl CTURE 9(09) Bl NARY
VALLE 21.

EEEEE R R R EEE RS EEE]

*

*

*

*

Typecode section
Thi s contains CDR encodi ngs of necessary typecodes.

LR RS E R RS E R RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES]

01 EXAWPLE- TYPE PI CTURE X(28).

CCPY CORBATYP.

351

CHAPTER 8 | API Reference

Example 36: The idimembername Copybook (Sheet 2 of 2)

88 EXAMPLE- UNBOUNDEDSEQ VALUE
"1 DL: exanpl e/ unboundedseq: 1. 0".
88 EXAWPLE VALUE
"I DL: exanpl e: 1. 0".
01 EXAVPLE- TYPE- LENGTH Pl CTURE S9(09)

Bl NARY VALUE 28.

3. The following is an example of how to use SEQSET in a client or server
program:

Example 37:Using SEQSET in Client or Server (Sheet 1 of 2)

WRKI NG STCRAGE SECTI ON

01 W5 MAX- ELEMENTS PI CTURE 9(09) BI NARY
VALUE 10.

01 W5 CURRENT- ELEMENT PI CTURE 9(09) BI NARY
VALLE 0.

DO EXAMPLE- MYCP.
CALL " OQAGET" USI NG EXAVPLE- MYCP- ARGS.
SET W5 COAGET TO TRUE.
PERFCRM CHECK- STATUS.

* initialize the maxi numand | ength fields.

* MOVE W6- MAX- ELEMENTS TO SEQUENCE- MAXI MM CF

MOVE O TO SEQUENCE- MAXI MM CF
EXAVPLE- MYCP- ARGS.

MOVE O TO SEQUENCE- LENGTH CF

EXAMPLE- MYCP- ARGS.

* |Initialize the sequence el enent data
MOVE O TO RESULT CF
RESULT-1 CF
EXAMPLE- MYCP- ARGS.
* set the typecode of the sequence
SET EXAMPLE- UNBOUNDEDSEQ TO TRUE
* Alocate nenory for the unbounded sequence.
* NOTE SEQUEENCE-MAXIMM is set to W5 MAX- ELEMENTS
* after SEQALLCC call.
CALL "SEQALLCC' USI NG W5 MAX- ELEMENTS
EXAMPLE- TYPE
EXAMPLE- TYPE- LENGTH
RESULT- SEQUENCE CF
EXAMPLE- MYCP- ARGS.

352

API Reference Details

Example 37:Using SEQSET in Client or Server (Sheet 2 of 2)

SET W5 SEQALLOC TO TRUE.
PERFORM CHECK- STATUS.
* Set each of the 10 el enents in the sequence.
PERFORM VARYI NG W5- CURRENT- ELEMENT
FROM 1 BY 1 UNTIL
W5 CURRENT- ELEMENT >
SEQUENCE- MAXI MM CF
EXAMPLE- MYCP- ARGS
* initialize the elenent data
ADD 2 TO RESULT CF
RESULT-1 CF
EXAVPLE- MYCP- ARGS
DI SPLAY "H enment data val ue equal s "
RESULT CF
RESULT-1 CF
EXAVPLE- MYCP- ARGS

* Set the current elenent to the el ement data buffer
* NOTE: SEQUENCE-LENGTH i s increnmented on each segset
CALL " SEQBET" USI NG RESULT- SEQUENCE CF
EXAVPLE- MYCP- ARGS
W& CURRENT- ELENMENT
RESULT CF
RESULT-1 CF
EXAVPLE- \YCP- ARGS
SET W& SEQBET TO TRUE
PERFORM CHECK- STATUS
END- PERFCRMVI

CALL "QQOAPUT" USI NG EXAMPLE- MYCP- ARGS.
SET W5 COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

LRSS RS E RS EESS

* Check Errors Copybook

Kk khkkkkhhhhkhkhhhhhkhkkhhhhhkhkhhhhhkhkkkhhhkhkkhhhhkhkkkhhhhkkkkhhkk

QCPY GKERRS.

Note: The OGCPY CGHKERRS statement in the preceding example is used in
batch programs. It is replaced with GcPY CERRSMFA in IMS or CICS server
programs.

353

CHAPTER 8 | API Reference

Exceptions A CCRBA: : BAD PARAM : | NVALI D_SEQUENCE exception is raised if the sequence
has not been set up correctly.

A OCRBA: : BAD PARAM : | NVALI D_BOUNDS exception is raised if the element to
be accessed is either set to 0 or greater than the current length.

354

API Reference Details

STRFREE

Synopsis

Usage

Description

Parameters

Example

STRFREE(i n PQA NTER string- poi nter)
/1 Frees the nenory allocated to a bounded string.

Common to clients and servers.

The STRFREE function releases dynamically allocated memory for an
unbounded string, via a pointer that was originally obtained by calling
STRSET. Do not try to use the unbounded string after freeing it, because
doing so might result in a runtime error. Refer to “Memory Handling” on
page 383 for more details.

The parameters for STRFREE can be described as follows:

string-pointer This is an i n parameter that is the unbounded string
pointer containing a copy of the bounded string.

The example can be broken down as follows:
1. Consider the following IDL:

interface sanple {
typedef string astring;
attribute astring nystring;

355

CHAPTER 8 | API Reference

See also

356

Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the i dl menber name copybook (where i di menber nare
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

EEEEE R R E R SRR E R EEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEES

* Attribute: nystring
* Mapped nane: nystring
* Type: sanpl e/ astring (read/wite)

E X

01 SAWPLE- \YSTR NG ARGS.

03 RESULT PQA NTER
VALUE NULL.

3. The following is an example of how to use STRFREE in a client or server

program:

PROCEDURE DI M SI ON
* note the string pointer wll have been set
* by a call to STRSET/ STRSETP
CALL "STRFREE' USING RESULT CF SAMPLE- MYSTR NG ARGS.

DI SPLAY “The nenory i s now rel eased".

“STRSET” on page 362.

API Reference Details

STRGET

Synopsis

Usage

Description

Parameters

STRCGET(i n PA NTER stri ng- poi nter,
in 9(09) BINARY string-Ilength,
out X(nn) string)
/1 Copies the contents of an unbounded string to a bounded string.

Common to clients and servers.

The STRGET function copies the characters in the unbounded string pointer,
string-poi nter, to the string item. If the stri ng- poi nt er parameter does
not contain enough characters to exactly fill the target string, the target
string is terminated by a space. If there are too many characters in the
string- poi nt er, the excess characters are not copied to the target string.

Note: Null characters are never copied from the stri ng- poi nter to the
target string.

The number of characters copied depends on the length parameter. This
must be a valid positive integer (that is, greater than zero); otherwise, a
runtime error occurs. If the X(nn) data item is shorter than the length field,
the string is still copied, but obviously cannot contain the intended string.

The parameters for STRGET can be described as follows:

string-pointer This is an i n parameter that is the unbounded string pointer
containing a copy of the unbounded string.

string-length This is anin parameter that specifies the length of the
unbounded string.

string This is an out parameter that is a bounded string to which
the contents of the string pointer are copied. This string is
terminated by a space if it is larger than the contents of the
string pointer.

357

CHAPTER 8 | API Reference

The example can be broken down as follows:

1. Consider the following IDL:

Example

/1 1DL
interface sanpl e

{

typedef string astring;
attribute astring nystring;

5

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the i dI menber name copybook (where i di menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

EEEE SRR E RS R EEESEES

* Attribute: nystring
* Mapped nane: nystring
* Type: sanpl e/ astring (read/wite)

Kkkkkhkkhkkhhhhhkdhhhhhhhhhhhhkhhhhhhhkhkkhhhhkhhhhhhhkkkhhkhkkxkh k%

01 SAWPLE- WYSTR NG ARGS.

03 RESULT PA NTER

VALUE NULL.

358

API Reference Details

3. The following is an example of how to use STRGET in a client or server
program:

WRKI NG STCRAGE SECTI ON

01 W5 BOUNDED- STRI NG PI CTURE X(20) VALUE SPACES.
01 W5 BOMNDED- STRING LEN Pl CTURE 9(09) Bl NARY VALUE 20.

PROCEDURE DI M SI ON

* note the string pointer wll have been set
* by a call to STRSET/ STRSETP

CALL "STRGET" USING RESULT CF MYSTR NG ARGS
W5- BOUNDED- STRI NG LEN
W5- BOUNDED- STR NG
SET W& STRGET TO TRUE
PERFCRM CHECK- STATUS.
Dl SPLAY "Bounded string nowretrieved and val ue equal s "
W5- BOUNDED- STRI NG

359

CHAPTER 8 | API Reference

STRLEN

Synopsis

Usage

Description

Parameters

Example

360

STRLEN(i n PQ NTER stri ng- poi nter,
out 9(09) BINARY string-Iength)
/1 Returns the actual length of an unbounded string.

Common to clients and servers.

The STRLENfunction returns the number of characters in an unbounded
string.

The parameters for STRLEN can be described as follows:
string-poi nter This is an i n parameter that is the unbounded string pointer
containing the unbounded string.

string-1ength This is an out parameter that is used to retrieve the actual
length of the string that the stri ng- poi nt er contains.

The example can be broken down as follows:
1. Consider the following IDL:

/] 1DL
interface sanpl e

{
typedef string astring;

attribute astring nystring;

}

API Reference Details

Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the i dI menber name copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

LEEEE R R R R R RS EES

* Attribute: nystring
* Mapped name: nystring
* Type: sanpl e/ astring (read/wite)

Khkkhkhkhhkhkhkhhhhhkhkhkhhhhhkhkhkhhhhkhkhkhhhhhkhkkhhhkhkkkhhhhkkkhhhkkkkhhk

01 SAWPLE- WYSTR NG ARGS.
03 RESULT PO NTER
VALUE NULL.

The following is an example of how to use STRLENn a client or server
program:

WIRKI NG STCRAGE SECTI ON
01 W5 BOUNDED STR NG LEN Pl CTURE 9(09) Bl NARY VALLE 0.
PRCCEDURE DI M SI ON
* note the string pointer will have been set
* by a call to STRSET/ STRSETP
CALL "STRLEN' USI NG RESULT CF MYSTRI NG ARGS
W& BOUNDED- STRI NG LEN

DI SPLAY “"The String | ength equals set".
W5- BOUNDED- STRI NG LEN

361

CHAPTER 8 | API Reference

STRSET

Synopsis

Usage

Description

Parameters

362

STRSET(out PO NTER string-pointer,
in 9(09) BINARY string-Iength,
in X(nn) string)
Il Creates a dynanmic string froma PIC X(n) data item

Common to clients and servers

The STRSET function creates an unbounded string to which it copies the
number of characters specified in I engt h from the bounded string specified
in string. If the bounded string contains trailing spaces, these are not
copied to the target unbounded string whose memory location is specified
by string-pointer.

The STRSETP version of this function is identical, except that it does copy
trailing spaces. You can use the STRFREE to subsequently free this allocated
memory.

The number of characters copied depends on the length parameter. This
must be a valid positive integer (that is, greater than zero); otherwise, a
runtime error occurs. If the X(nn) data item is shorter than the length field,
the string is still copied, but obviously cannot contain the intended string.

Note: STRSET allocates memory for the string from the program heap at
runtime. Refer to “STRFREE” on page 355 and “Unbounded Strings and
Memory Management” on page 389 for details of how this memory is
subsequently released.

The parameters for STRSET can be described as follows:

string- poi nter This is an out parameter to which the unbounded string is
copied.

string-1ength This is anin parameter that specifies the number of
characters to be copied from the bounded string specified in
string.

API Reference Details

string This is an i n parameter containing the bounded string that
is to be copied. This string is terminated by a space if it is
larger than the contents of the target string pojnter. If the
bounded string contains trailing spaces, they are not copied.

Example The example can be broken down as follows:
1. Consider the following IDL:

/1 1DL
interface sanple

{
typedef string astring;

attribute astring nystring;
IE
2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the i dI nenber nane copybook (where i dI menber name
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

hhkkhkhhhkhkhhhhhkkhkhhhhhkhkkhhhhkhkkhhhhhkhkkhhhhkhkkhkhhhhkkkhhhkkkkhhk

* Attribute: nystring
* Mapped name: nystring
* Type: sanpl e/ astring (read/wite)

EEEEEE RS SR RS S SRS E RS SRR SRR EEEEEEEEEEEEEEEEEEEEE S

01 SAWPLE- \YSTR NG ARGS.

03 RESULT PO NTER
VALUE NULL.

363

CHAPTER 8 | API Reference

3. The following is an example of how to use STRSET in a client or server
program:

WCRKI NG STCRAGE SECTI ON

01 W5 BOUNDED- STRI NG Pl CTURE X(20) VALUE SPACES.
01 WS- BONDED- STRI NG LEN PI CTURE 9(09) BI NARY VALUE 20.

PROCEDURE DI M SI ON

* Note trailing spaces are not copied.
MOVE "JCE BLOGEES' TO W5- BOUNDED STRI NG
CALL "STRSET" USING RESULT OF SAMPLE- MYSTR NG ARGS
W\&- BOUNDED- STRI NG LEN
- BOUNDED- STRI NG
SET W5 STRSET TO TRUE.
PERFCRM CHECK- STATUS.

DI SPLAY "String pointer is now set".

See also T “STRFREE” on page 355.
T “Unbounded Strings and Memory Management” on page 389.

364

API Reference Details

STRSETP

Synopsis

Usage

Description

Example

STRSETP(out PQA NTER st ri ng- poi nter,
in 9(09) BINARY string-Iength,
in X(nn) string)
/1 Creates a dynanic string froma PIC X(n) data item

Common to clients and servers.

The STRSETP function is exactly the same as STRSET, except that STRSETP
does copy trailing spaces to the unbounded string. Refer to “STRSET” on
page 362 for more details.

Note: STRSETP allocates memory for the string from the program heap at
runtime. Refer to “STRFREE” on page 355 and “Unbounded Strings and
Memory Management” on page 389 for details of how this memory is
subsequently released.

The example can be broken down as follows
1. Consider the following IDL:

/11DL

interface sanple

{
typedef string astring;
attribute astring nystring;

D

365

CHAPTER 8 | API Reference

2. Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the i dl menber name copybook (where i di menber nare
represents the (possibly abbreviated) name of the IDL member that

contains the IDL definitions):

EEEEE R R E R SRR E R EEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEES

* Attribute: nystring
* Mapped nane: nystring
* Type: sanpl e/ astring (read/wite)

E X

01 SAWPLE- MYSTR NG ARGS.

03 RESULT PO NTER
VALUE NULL.

3. The following is an example of how to use STRSETP in a client or server

program:
WORKI NG STCRAGE SECTI ON

01 W5 BOUNDED- STRI NG PI CTURE X(20) VALUE SPACES.
01 W5 BOUNDED- STRING LEN PI CTURE 9(09) BI NARY VALUE 20.

PROCEDURE DI M SI ON

* Note trailing spaces are copi ed.
MOVE "JCE BLOGSS' TO Ws- BONDED- STR NG
CALL "STRSETP" USI NG RESULT CF MYSTR NG ARGS
W5- BOMNDED- STRI NG LEN
W6- BOMNDED- STRI NG
SET W5 STRSETP TO TRUE
PERFORM CHECK- STATUS.

DI SPLAY “String pointer is now set".

T “STRFREE” on page 355.

See also
T “Unbounded Strings and Memory Management” on page 389.

366

API Reference Details

STRTOOBJ

Synopsis

Usage

Description

Parameters

STRTOCBI(i n PO NTER obj ect-string,

out PA NTER obj ect - r ef er ence)
/1 Creates an object reference froman interoperabl e obj ect
Il reference (ICR).

Common to clients and servers.

The STRTOOBJ function creates an object reference from a stringfied IOR, by
calling the CRB: : string_t o_obj ect () C++ function.

A stringified interoperable object reference is of the form:

| OR 010000001c00000049444c3a53696d706c652f 53696d706c654f 62626563
743a312e300001000000000000007€000000010102000a0000006a7578746
1706f 736500e803330000003a3e023231096a75787461706f 73651273696d
706c655f 70657273697374656e7400106d795f 73696d706c655f 6f 6262656
3740002000000010000001800000001000000010001000000000000010100
01000000090101000600000006000000010000002100

You can use the supplied i or dunp utility to parse the IOR. The iordump
utility is available with Orbix E2A in UNIX System Services.

The parameters for STRTOOBI can be described as follows:

obj ect-string This is an i n parameter that contains a pointer to the
address in memory where the interoperable object
reference is held.

obj ect-reference This is an out parameter that contains a pointer to the
address in memory where the returned object reference
is held.

367

CHAPTER 8 | API Reference

Example The following is an example of how to use STRTQBJ in a client or server
program:

WIRKI NG STCRAGE SECTI O\
* Nornally not stored in Wrking storage - this is just for

denonstrati on.

01 W& SI MPLE- | CR Pl C X(2048) VALUE
"1 OR 010000001c00000049444c3a53696d706c652f 53696d706c654f 626a
6563743a312e300001000000000000007e000000010102000a20000006a757
87461706f 736500e803330000003a3e023231096a75787461706f 73651273
696d706c655f 70657273697374656e7400106d795f 73696d706c655f 6f 626
a656374000200000001000000180000000100000001000100000000000001
010001000000090101000600000006000000010000002100"

01 W& SI MPLE- S| MPLECBIECT PA NTER VALUE NULL.

* Set the COBCL pointer to point to the ICR string
* Nornally read froma file
CALL " STRSET" USI NG | CR- RECG- PTR
| R REG LEN
W& SI MPLE- | OR
SET W& STRSET TO TRUE
PERFCRM CHECK- STATUS.
* (btain object reference fromthe IR
CALL "STRTGOBJ" USI NG | R REG PTR
W&- S| MPLE- SI MPLECBIECT

SET W5 STRTGCBJ TO TRUE
PERFCRM CHECK- STATUS.

See also “OBJTOSTR” on page 312.

368

API Reference Details

TYPEGET

Synopsis

Usage

Description

Parameters

Example

TYPECET(i nout PO NTER any- poi nter,
in 9(09) BINARY typecode-key-I ength,
out X(nn) typecode-key)

/1 Extracts the type nane froman any.

Common to clients and servers.

The TYPEGET function returns the typecode of the value of the any. You can
then use the typecode to ensure that the correct buffer is passed to the
ANYGET function for extracting the value of the any.

The parameters for TYPEGET can be described as follows:

any- poi nt er This is an i nout parameter that is a pointer to the
address in memory where the any is stored.

typecode- key- 1 ength This is an i n parameter that specifies the length of
the typecode key, as defined in the i dI nrenber nane
copybook generated by the Orbix E2A IDL compiler.

t ypecode- key This is an out parameter that contains a 01 level
data item to which the typecode key is copied. This
is defined in the i dI nenber nane copybook generated
by the Orbix E2A IDL compiler. This is a bounded
string.

The example can be broken down as follows:
1. Consider the following IDL:

/1 1DL
interface sanpl e

{
}s

attribute any nyany;

369

CHAPTER 8 | API Reference

2.

Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code code in the i dI menber name copybook (where

i dl menber name represents the (possibly abbreviated) name of the IDL
member that contains the IDL definitions):

01 SAWPLE- MYANY- ARGS.

03 RESULT PA NTER
VALUE NULL.
01 EXAVPLE- TYPE PI CTURE X(15).
QCPY CORBATYP.
88 SAWPLE VALUE
"1 DL: sanpl e: 1. 0".
01 EXAMPLE- TYPE- LENGTH Pl CTURE S9(09) Bl NARY
VALUE 22.

The following is an example of how to use TYPEGET in a client or server
program:

WRKI NG STCRAGE SECTI ON
01 W5 DATA Pl C S9(5) VALLE 0.

CALL "TYPECGET" USING RESULT CF SAMPLE- MYANY- ARGS
EXAMPLE- TYPE- LENGTH
EXAMPLE- TYPE.
SET W5 TYPEGET TO TRUE
PERFORM CHECK- STATUS.
* val i dat e typecode
EVALUATE TRUE
WHEN OCRBA- TYPE- SHORT
*retrieve the ANY OCRBA : Short val ue
CALL "ANYGET" USI NG RESULT OF SAMPLE- MYANY- ARGS
W5 DATA
SET W& ANYGET TO TRUE
PERFCRM GHEQK- STATUS
Dl SPLAY "ANY val ue equal s " W5 DATA
WHEN OTHER
D SPLAY "Wong typecode received, expected a SHORT
typecode "
END- EVALUATE.

Exceptions

A OCRBA : BAD | NV_CRDER : TYPESET_NOT_CALLED exception is raised if the

typecode of the any has not been set via TYPESET.

370

API Reference Details

TYPESET

Synopsis

Description

Parameters

Example

TYPESET(i nout PO NTER any- poi nter,
in 9(09) BINARY typecode-key-I ength,
in X(nn) typecode-key)

/1l Sets the type nane of an any.

The TYPESET function sets the type of the any to the supplied typecode. You
must call TYPESET before you call ANYSET, because ANYSET uses the current
typecode information to insert the data into the any.

The parameters for TYPESET can be described as follows:

any-type This is an i nout parameter that is a pointer to the
address in memory where the any is stored.

typecode- key- 1 ength This is an i n parameter that specifies the length of
the typecode string, as defined in the i dI menber nane
copybook generated by the Orbix E2A IDL compiler.

t ypecode- key This is an i n parameter containing the typecode
string representation, as defined in the
i dl menber nanme copybook generated by the Orbix E2A
IDL compiler. The appropriate 88 level item is set for
the typecode to be used.

The example can be broken down as follows:
1. Consider the following IDL:

371

CHAPTER 8 | API Reference

See also

372

Based on the preceding IDL, the Orbix E2A IDL compiler generates the
following code in the i dl menber name copybook (where i di menber nare
represents the (possibly abbreviated) name of the IDL member that
contains the IDL definitions):

01 SAWPLE- MYANY- ARGS.
03 RESULT PO NTER
VALUE NULL.

EEEE R E RS R EE R EEEEEEEEEEE TR EEEEEEEEEEEEEEEEEEEEEEEEEEEEESS

*

* Typecode section
* Thi s contai ns COR encodi ngs of necessary typecodes.

*

EEEEEEEE RS SRR EEESESES

01 EXAVPLE- TYPE Pl CTURE X(15).
CCPY CCORBATYP.
88 SAWPLE VALUE
"1 DL: sanpl e: 1. 0".
01 BEXAWPLE- TYPE- LENGTH Pl CTURE S9(09)

Bl NARY VALUE 22.

The following is an example of how to use TYPESET in a client or server
program:

WRKI NG STCRAGE SECTI ON
01 W& DATA PI C S9(5) VALUE 0.

PROCEDURE D'V SI ON

* Set the ANY typecode to be a CORBA : ShortLong

SET CCRBA- TYPE- SHORT TO TRUE

CALL "TYPESET* USING RESULT CF
SAMPLE- MYANY- ARGS
EXAMPLE- TYPE- LENGTH
EXAMPLE- TYPE.

SET W5 TYPESET TO TRUE

PERFCRM CHECK- STATUS.

“ANYFREE" on page 270.
“The any Type and Memory Management” on page 397.

API Reference Details

WSTRFREE

Synopsis VSTRFREE(i n PA NTER wi dest ri ng- poi nt er)
/1 Frees the nenory allocated to a bounded wi de string.

373

CHAPTER 8 | API Reference

WSTRGET

Synopsis

Usage

Description

Parameters

374

WBTRCET(i n PA NTER wi dest ri ng- poi nter,

in 9(09) BINARY wi destring-Iength,

out @ nn) wdestring)
/1 Copies the contents of an unbounded wi de string to a bounded
/1 wide string.

Common to clients and servers.

The WSTRCGET function copies the characters in the unbounded wide string
pointer, string_poi nter, to the COBOL PI C X(n) wide string item. If the
string_poi nter parameter does not contain enough characters to exactly
fill the target wide string, the target wide string is terminated by a space. If
there are too many characters in the stri ng- poi nt er, the excess characters
are not copied to the target wide string.

Note: Null characters are never copied from the stri ng- poi nter to the
target wide string.

The parameters for WsTRGET can be described as follows:

wi destring-poi nter This is an i n parameter that is the unbounded wide
string pointer containing a copy of the unbounded
wide string.

wi destring-length This is an i n parameter that specifies the length of
the unbounded wide string.

wi destring This is an out parameter that is a bounded wide
string to which the contents of the wide string pointer
are copied. This wide string is terminated by a space
if it is larger than the contents of the wide string
pojnter.

API Reference Details

WSTRLEN

Synopsis

Usage

Description

Parameters

WBTRLEN(i n PA NTER wi dest ri ng- poi nt er,
out 9(09) BINARY wi destring-1ength)
/1 Returns the actual |ength of an unbounded wi de string.

Common to clients and servers.

The WSTRLEN function returns the number of characters in an unbounded
wide string.

The parameters for WsTRLEN can be described as follows:
wi destring-poi nter This is an i n parameter that is the unbounded wide
string pointer containing the unbounded wide string.

widestring-1ength This is an out parameter that is used to retrieve the
actual length of the wide string that the
string- poi nter contains.

375

CHAPTER 8 | API Reference

WSTRSET

Synopsis

Usage

Description

Parameters

376

WBTRSET(out PO NTER wi dest ri ng- poi nter,
in 9(09) BINARY wi destring-Iength,
in @nn) wdestring)
Il Creates a dynanic wide string froma PIC G n) data item

Common to clients and servers

The WBTRSET function creates an unbounded wide string to which it copies
the number of characters specified in | engt h from the bounded wide string
specified in string. If the bounded wide string contains trailing spaces,
these are not copied to the target unbounded wide string whose memory
location is specified by st ri ng- poi nter.

The WSTRSETP version of this function is identical, except that it does copy
trailing spaces. You can use the WSTRFREE to subsequently free this allocated
memory.

The parameters for WSTRSET can be described as follows:

wi destring-pointer This is an out parameter to which the unbounded
string is copied.

wi dest ring-1ength This is an i n parameter that specifies the number of
characters to be copied from the bounded string
specified in stri ng.

wi destring This is an i n parameter containing the bounded
string that is to be copied. This string is terminated
by a space if it is larger than the contents of the
target string pojnter. If the bounded string contains
trailing spaces, they are not copied.

API Reference Details

WSTRSETP

Synopsis VSTRSETP(out PQ NTER wi dest ri ng- poi nter,
in 9(09) BINARY wi destring-Iength,
in @nn) wdestring)
/1 Oreates a dynanic wide string froma PIC G n) data item

Usage Common to clients and servers.

Description The WBTRSETP function is exactly the same as WSTRSET, except that WETRSETP
does copy trailing spaces to the unbounded wide string. Refer to
“WSTRSET” on page 376 for more details.

377

CHAPTER 8 | API Reference

CHECK-STATUS

Synopsis

Usage

Description

378

CHECK- STATUS
I/ Checks to see if a systemexception has occurred on an APl call.

Common to clients and servers.

The CHECK- STATUS paragraph written in COBOL checks to see if a system
exception has occurred on an API call. It is not an API in the COBOL
runtime. It is contained in the or bi xhl g. | NCLUDE. GCPYLI B{ GHKERRS)
member. To use CHECK- STATUS, you must use CRBSTAT to register the
CRBI X- STATUS- | NFCRVATI ON block with the COBOL runtime. (Refer to
“ORBSTAT" on page 329.) You should call GHECK- STATUS from the
application on each subsequent API call, to determine if an exception has
occurred on that API call.

The CHECK- STATUS paragraph checks the GORBA- EXCEPTI ON variable that is
defined in the CRBI X- STATUS- | NFCRMVATI CN block, and which is updated after
every API call. If an exception has occurred, the following fields are set in
the CRBI X- STATUS- | NFCRVATI CN block:

COORBA- EXCEPTI ON This contains the appropriate value relating to the
exception that has occurred. Values are in the
range 1-36. A 0 value means no exception has
occurred.

COWPLETI O\ STATUS This can be:
COVPLETI ON- STATUS- YES—Value 0.
COWPLETI O\ STATUS- NO—Value 1.
COVPLETI ON- STATUS- MAYBE—Value 2.

EXCEPTI ON- TEXT This is a COBOL pointer that contains a reference
to the text of the CORBA system exception that has
occurred.

Note: When an exception occurs, the JOL RETURN OCDE is set to 12 and
the application terminates.

API Reference Details

Parameters CHECK- STATUS takes no parameters.
Definition The CHECK- STATUS function is defined as follows in the GHKERRS copybook:
CHECK- STATUS.

| F NOT OCRBA- NO EXCEPTI ON THEN
DI SPLAY "Call Failed in api: " W5 APl - CALLED
SET QCRBA- EXCEPTI ON- | NDEX TO OCORBA- EXCEPTI ON
SET CORBA- EXCEPTI ON- | NDEX UP BY 1
Dl SPLAY " CCORBA Syst em Exception raised: "
COORBA- EXCEPTI ON- NAVE(CCRBA- EXCEPTI ON- | NDEX)
SET CORBA- STATUS- | NDEX TO COWPLETI O\ STATUS
SET QCRBA- STATUS- | NDEX UP BY 1
Dl SPLAY "Conpl etion Status:
OORBA- STATUS- NAME(CORBA- STATUS- | NDEX)

CALL "STRGET" USI NG EXCEPTI ON- TEXT
ERRCR- TEXT- LEN CF
CRBI X- EXCEPTI ON- TEXT
ERRCR- TEXT CF
CRBI X- EXCEPTI ON- TEXT

D SPLAY "OCRBA Error Message:
Dl SPLAY ERRCR TEXT CF CRBI X- EXCEPTI ONF TEXT (1: 64)
DI SPLAY ERRCR TEXT CF CRBI X- EXCEPTI ONF TEXT (64: 64)
Dl SPLAY ERRCR TEXT CF CRBI X- EXCEPTI ONF TEXT (128: 64)
MDVE 12 TO RETURN CCDE
STCP RN

END- | F.

Note: The CHECK- STATUS paragraph in the CERRSMFA copybook is almost
exactly the same, except it does not set the RETURN- OCDE register, and it
calls GBAXK instead of STGP RWNif a system exception occurs. This means
that the native version of CHECK- STATUS is used to update the return code
and exit the program.

379

CHAPTER 8 | API Reference

Example The following is an example of how to use GHECK- STATUS in the batch server
implementation program:

DO Sl MPLE- S| MPLECBJECT- CALL- ME.
CALL "OQAGET" USING Sl MPLE- SI MPLECBIECT- 70FE- ARGS.
SET W5- COAGET TO TRUE
PERFCRM CHECK- STATUS.

CALL "QQOAPUT" USI NG SI MPLE- SI MPLECBIECT- 70FE- ARGS.
SET W& COAPUT TO TRUE.
PERFCRM CHECK- STATUS.

B e R

* Check Errors Copybook

khkkkhkkhkkhkhkhkhkhkhhkhhhkhkhhhhhkhkhhhhhhkhhhhhhhhhhhhkhhhhhhkhhhhhhkhkhhhhhkhhkxk

CCPY GHKERRS.

Note: The OCPY GKERRS statement in the preceding example is replaced
with aCPY CERRSMFA in the IMS or CICS server programs.

380

Deprecated APls

Deprecated APIs

Deprecated APIs

This section summarizes the APIs that were available with the Orbix 2.3
COBOL adapter, but which are now deprecated with the Orbix E2A COBOL
runtime. It also outlines the APIs that are replacing these deprecated APIs.

CBJCGET(I N obj ect _ref, QUT dest_pointer, IN src_|ength)

/1 Obix 2.3 : Returned a stringified Obix object reference.
/1 Obix E2A° No repl acenent. Supported on the server side for
/1 m gration purposes.

CBJCETI (I N obj ect _ref, QUT dest_pointer, |N dest_|ength)

/1 Obix 2.3 : Returned a stringified interoperabl e object

/1 reference (ICR) froma valid object reference.
/1 Obix E2A Repl aced by CBITOSTR

CBJSET(I N obj ect _nare, QUT obj ect _ref)

/1 Obix 2.3 : Oeated an object reference froma stringified
/1 obj ect reference.

/1 Obix E2A: Repl aced by STRTGOBJ.

CBJSETM I N obj ect _nane, I N marker, QOUT object ref)

/1 Obix 2.3 : Oeated an object reference froma stringified
/1 obj ect reference and set its narker.

/1 Obix E2A Repl aced by CBINEW

CRBALLOO(I N I ength, QUT pointer)
/1 Obix 2.3 : Alocated nenory at runtine.
/1 Obix E2A: Repl aced by MENALLCC

CRBFREE(| N poi nt er)
/1 Obix 2.3 : Freed nenory.
/1 Obix E2A° Repl aced by MEMFREE and STRFREE.

CRBGET(| NOUT conpl et e_cobol _oper ati on_par anet er _buf f er)
// Obix 2.3 : Gt INand | NQUT val ues.
/1 Obix E2A Repl aced by COAGET.

CRBI N T(I N server_name, | N server_name_| en)

/1 Obix 2.3 : Equivalent to inpl_is_ready in Ct+.
/1 Obix E2A Repl aced by COARUN

381

CHAPTER 8 | API Reference

CRBPUT(| NQUT conpl et e_cobol _oper at i on_par anet er _buf f er)
/1 Obix 2.3 : Returned | NOUT, QUT & result val ues.
/1 Obix E2A: Repl aced by COAPUT.

CRBREGQ(| N cobol _i nterface_description, OJT object_ref)

Il Obix 2.3 : Describes an interface to the COBCOL adapter and
11 creates an object reference using the interface
11 descri ption.

/1 Obix E2A Replaced by CBINEWand CRBREG

CRBREQ(I N request _i nfo_buffer)
/1l Obix 2.3 : Provided current request infornation.
/1 Obix E2A Repl aced by OQAREQ

STRSETSP(QUT dest _pointer, INsrc_length, IN src)

/1 Obix 2.3 : Oeated a dynanmic string froma PIC X(n) data item
/1 Obix E2A Repl aced by STRSETP.

382

In this chapter

CHAPTER 9

Memory Handling

Memory handling must be performed when using dynamic
structures such as unbounded strings, unbounded sequences,
and anys. This chapter provides details of responsibility for the
allocation and subsequent release of dynamic memory for
these complex types at the various stages of an Orbix E2A
COBOL application. It first describes in detail the memory
handling rules adopted by the COBOL runtime for operation
parameters relating to different dynamic structures. It then
provides a type-specific breakdown of the APIs that are used
to allocate and release memory for these dynamic structures.

This chapter discusses the following topics:

Operation Parameters page 384

Memory Management Routines page 404

383

CHAPTER 9 | Memory Handling

Operation Parameters

Overview

In this section

384

This section describes in detail the memory handling rules adopted by the
COBOL runtime for operation parameters relating to different types of
dynamic structures, such as unbounded strings, bounded and unbounded
sequences, and any types. Memory handling must be performed when using
these dynamic structures. It also describes memory issues arising from the
raising of exceptions.

The following topics are discussed in this section:

Unbounded Sequences and Memory Management page 385
Unbounded Strings and Memory Management page 389
The any Type and Memory Management page 397
Memory Management Routines page 404

Operation Parameters

Unbounded Sequences and Memory Management

Overview for IN parameters

Summary of rules for IN
parameters

Table 27 provides a detailed outline of how memory is handled for
unbounded sequences that are used as i n parameters.

Table 27: Memory Handling for IN Unbounded Sequences

Client Application Server Application

1. SEQALLOC

2. SEQSET

3. OREXEC—(send)
4. COAGET—(receive, allocate)
5. SEQGET

6. COAPUT—(free)

7. SEQFREE

The memory handling rules for an unbounded sequence used as anin
parameter can be summarized as follows, based on Table 27:

1. The client calls SEQALLOC to initialize the sequence information block
and allocate memory for both the sequence information block and the
sequence data.

The client calls SEQSET to initialize the sequence elements.

The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the values across the network.

4. The server calls COAGET, which causes the server-side COBOL runtime
to receive the sequence and implicitly allocate memory for it.

5. The server calls SEQET to obtain the sequence value from the
operation parameter buffer.

6. The server calls coaPUT, which causes the server-side COBOL runtime
to implicitly free the memory allocated by the call to COAGET.

7. The client calls SEQFREE to free the memory allocated by the call to
SEQALLCC.

385

CHAPTER 9 | Memory Handling

Overview for INOUT parameters

Summary of rules for INOUT
parameters

386

Table 28 provides a detailed outline of how memory is handled for
unbounded sequences that are used as i nout parameters.

Table 28: Memory Handling for INOUT Unbounded Sequences

Client Application Server Application

1. SEQALLOC

2. SEQSET

3. OREXEC—(send)
. COAGET—(receive, allocate)
. SEQGET

. SEQFREE

. SEQALLOC

. SEQSET

. COAPUT—(send, free)

OWOooNO O

10. (free, receive, allocate)
11. SEQGET

12. SEQFREE

The memory handling rules for an unbounded sequence used as an i nout
parameter can be summarized as follows, based on Table 28:

1.

The client calls SEQALLCC to initialize the sequence information block
and allocate memory for both the sequence information block and the
sequence data.

The client calls SEQSET to initialize the sequence elements.

The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the values across the network.

The server calls COAGET, which causes the server-side COBOL runtime
to receive the sequence and implicitly allocate memory for it.

The server calls SEQGET to obtain the sequence value from the
operation parameter buffer.

The server calls SEQFREE to explicitly free the memory allocated for the
original i n sequence via the call to COAGET in point 4.

The server calls SEQALLQOC to initialize the replacement out sequence
and allocate memory for both the sequence information block and the
sequence data.

Overview for OUT and return
parameters

10.

11.

12.

Operation Parameters

The server calls SEQSET to initialize the sequence elements for the

replacement out sequence.

The server calls CAPUT, which causes the server-side COBOL runtime

to marshal the replacement out sequence across the network and then

implicitly free the memory allocated for it via the call to SEQALLCC in

point 7.

Control returns to the client, and the call to CGRBEXEC in point 3 now

causes the client-side COBOL runtime to:

vi. Free the memory allocated for the original i n sequence via the
call to SEQALLCOC in point 1.

vii. Receive the replacement out sequence.

viii. Allocate memory for the replacement out sequence.

Note: By having CRBEXECfree the originally allocated memory before
allocating the replacement memory means that a memory leak is
avoided.

The client calls SEQGET to obtain the sequence value from the operation
parameter buffer.
The client calls SEQFREE to free the memory allocated for the

replacement out sequence in point 10 via the call to GRBEXEC in point
3.

Table 29 provides a detailed outline of how memory is handled for
unbounded sequences that are used as out or ret urn parameters.

Table 29: Memory Handling for OUT and Return Unbounded Sequences

Client Application Server Application

1. ORBEXEC—(send)

6. (receive, allocate)
7. SEQGET
8. SEQFREE

2. COAGET—(receive)

3. SEQALLOC

4. SEQSET

5. COAPUT—(send, free)

387

CHAPTER 9 | Memory Handling

Summary of rules for OUT and
return parameters

388

The memory handling rules for an unbounded sequence used as an out or
ret urn parameter can be summarized as follows, based on Table 29:

1.

The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the request across the network.

The server calls COAGET, which causes the server-side COBOL runtime
to receive the client request.

The server calls SEQALLOC to initialize the sequence and allocate
memory for both the sequence information block and the sequence
data.

The server calls SEQSET to initialize the sequence elements.

The server calls COAPUT, which causes the server-side COBOL runtime
to marshal the values across the network and implicitly free the
memory allocated to the sequence via the call to SEQALLCC.

Control returns to the client, and the call to CRBEXEC in point 1 now
causes the client-side COBOL runtime to receive the sequence and
implicitly allocate memory for it.

The client calls SEQGET to obtain the sequence value from the operation
parameter buffer.

The client calls SEQFREE, which causes the client-side COBOL runtime
to free the memory allocated for the sequence via the call to ORBEXEC.

Operation Parameters

Unbounded Strings and Memory Management

Overview for IN parameters

Summary of rules for IN
parameters

Table 30 provides a detailed outline of how memory is handled for
unbounded strings that are used as i n parameters.

Table 30: Memory Handling for IN Unbounded Strings

Client Application Server Application

1. STRSET
2. ORBEXEC—(send)

6. STRFREE

3. COAGET—(receive, allocate)
4, STRGET
5. COAPUT—(free)

The memory handling rules for an unbounded string used as anin
parameter can be summarized as follows, based on Table 30:

1.

The client calls STRSET to initialize the unbounded string and allocate
memory for it.

The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the values across the network.

The server calls COAGET, which causes the server-side COBOL runtime
to receive the string and implicitly allocate memory for it.

The server calls STRGET to obtain the string value from the operation
parameter buffer.

The server calls COAPUT, which causes the server-side COBOL runtime
to implicitly free the memory allocated by the call to GOAGET.

The client calls STRFREE to free the memory allocated by the call to
STRSET.

389

CHAPTER 9 | Memory Handling

Overview for INOUT parameters Table 31 provides a detailed outline of how memory is handled for
unbounded strings that are used as i nout parameters.

Table 31: Memory Handling for INOUT Unbounded Strings

Client Application Server Application

1. STRSET

2. ORBEXEC—(send)
3. COAGET—(receive, allocate)
4. STRGET

5. STRFREE

6. STRSET

7. COAPUT—(send, free)

8. (free, receive, allocate)

9. STRGET

10. STRFREE
Summary of rules for INOUT The memory handling rules for an unbounded string used as an i nout
parameters parameter can be summarized as follows, based on Table 31:

1. The client calls STRSET to initialize the unbounded string and allocate
memory for it.

2. The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the values across the network.

3. The server calls GOAGET, which causes the server-side COBOL runtime
to receive the string and implicitly allocate memory for it.

4. The server calls STRGET to obtain the string value from the operation
parameter buffer.

5. The server calls STRFREE to explicitly free the memory allocated for the
original i n string via the call to COAGET in point 3.

6. The server calls STRSET to initialize the replacement out string and
allocate memory for it.

7. The server calls COAPUT, which causes the server-side COBOL runtime
to marshal the replacement out string across the network and then

implicitly free the memory allocated for it via the call to STRSET in point
6.

390

Overview for OUT and return
parameters

Summary of rules for OUT and
return parameters

10.

Operation Parameters

Control returns to the client, and the call to CRBEXEC in point 2 now
causes the client-side COBOL runtime to:

i Free the memory allocated for the original i n string via the call to
STRSET in point 1.

ii. Receive the replacement out string.
iii. Allocate memory for the replacement out string.

Note: By having CRBEXECfree the originally allocated memory before
allocating the replacement memory means that a memory leak is
avoided.

The client calls STRGET to obtain the replacement out string value from
the operation parameter buffer.

The client calls STRFREE to free the memory allocated for the
replacement out string in point 8 via the call to GRBEXEC in point 2.

Table 32 provides a detailed outline of how memory is handled for
unbounded strings that are used as out or ret urn parameters.

Table 32: Memory Handling for OUT and Return Unbounded Strings

Client Application Server Application

1. ORBEXEC—(send)

5. (receive, allocate)
6. STRGET
7. STRFREE

2. COAGET—(receive)
3. STRSET
4. COAPUT—(send, free)

The memory handling rules for an unbounded string used as an out or
ret urn parameter can be summarized as follows, based on Table 32:

1.

2.

The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the request across the network.

The server calls COAGET, which causes the server-side COBOL runtime
to receive the client request.

391

CHAPTER 9 | Memory Handling

392

The server calls STRSET to initialize the string and allocate memory for
it.

The server calls QOAPUT, which causes the server-side COBOL runtime
to marshal the values across the network and implicitly free the
memory allocated to the string via the call to STRSET.

Control returns to the client, and the call to CRBEXEC in point 1 now
causes the client-side COBOL runtime to receive the string and
implicitly allocate memory for it.

The client calls STREET to obtain the string value from the operation
parameter buffer.

The client calls STRFREE, which causes the client-side COBOL runtime
to free the memory allocated for the string in point 5 via the call to
CRBEXEC in point 1.

Operation Parameters

Object References and Memory Management

Overview for IN parameters

Summary of rules for IN
parameters

Table 33 provides a detailed outline of how memory is handled for object
references that are used as i n parameters.

Table 33: Memory Handling for IN Object References

Client Application

Server Application

1. Attain object reference
2. ORBEXEC—(send)

6. OBJREL

3. COAGET—(receive)
4. read
5. COAPUT

The memory handling rules for an object reference used as an i n parameter
can be summarized as follows, based on Table 33:

1. The client attains an object reference through some retrieval
mechanism (for example, by calling STRTGOBJ or (BBIR R).

2. The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the object reference across the network.

3. The server calls COAGET, which causes the server-side COBOL runtime

to receive the object reference.

4. The server can now invoke on the object reference.

5. The server calls CoAPUT, which causes the server-side COBOL runtime
to implicitly free any memory allocated by the call to GOAGET.

6. The client calls GBIREL to release the object.

393

CHAPTER 9 | Memory Handling

Overview for INOUT parameters

Summary of rules for INOUT
parameters

394

Table 34 provides a detailed outline of how memory is handled for object
references that are used as i nout parameters.

Table 34: Memory Handling for INOUT Object References

Client Application Server Application

1. Attain object reference
2. ORBEXEC—(send)

3. COAGET—(receive)
4. read
5. OBJREL
6. Attain object reference
7. 0OBJDUP
8. COAPUT—(send)
9. (receive)
10. read
11. OBJREL

The memory handling rules for an object reference used as an i nout
parameter can be summarized as follows, based on Table 34:

1.

The client attains an object reference through some retrieval
mechanism (for example, by calling STRTQCBJ or CBJR R).

The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the object reference across the network.

The server calls GOAGET, which causes the server-side COBOL runtime
to receive the object reference.

The server can now invoke on the object reference.

The server calls CBIREL to release the original i n object reference.
The server attains an object reference for the replacement out
parameter through some retrieval mechanism (for example, by calling
STRTOBJ or BBJIR R).

The server calls GBIDUP to increment the object reference count and to
prevent the call to COAPUT in point 8 from causing the replacement out
object reference to be released.

The server calls c0APUT, which causes the server-side COBOL runtime
to marshal the replacement out object reference across the network.

Overview for OUT and return
parameters

Summary of rules for OUT and
return parameters

Operation Parameters

9. Control returns to the client, and the call to CGRBEXEC in point 2 now
causes the client-side COBOL runtime to receive the replacement out
object reference.

10. The client can now invoke on the replacement object reference.

11. The client calls CGBIREL to release the object.

Table 35 provides a detailed outline of how memory is handled for object
references that are used as out or ret urn parameters.

Table 35: Memory Handling for OUT and Return Object References

Client Application Server Application

1. ORBEXEC—(send)
2. COAGET—(receive)

3. Attain object reference
4. OBJDUP

5. COAPUT—(send)

6. (receive)
7. read

8. OBJREL

The memory handling rules for an object reference used as an out or return

parameter can be summarized as follows, based on Table 35:

1. The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the request across the network.

2. The server calls COAGET, which causes the server-side COBOL runtime
to receive the client request.

3. The server attains an object reference through some retrieval
mechanism (for example, by calling STRTGBJ or (BBIR R).

4. The server calls CBIDUP to increment the object reference count and to
prevent the call to COAPUT in point 5 from causing the object reference
to be released.

5. The server calls CoAPUT, which causes the server-side COBOL runtime
to marshal the object reference across the network.

6. Control returns to the client, and the call to CGRBEXEC in point 1 now
causes the client-side COBOL runtime to receive the object reference.

395

CHAPTER 9 | Memory Handling

7. The client can now invoke on the object reference.
8. The client calls CBIREL to release the object.

396

Operation Parameters

The any Type and Memory Management

Overview for IN parameters

Summary of rules for IN
parameters

Table 36 provides a detailed outline of how memory is handled for an any
type that is used as an i n parameter.

Table 36: Memory Handling for IN Any Types

Client Application Server Application

1. TYPESET

2. ANYSET

3. ORBEXEC—(send)
4. COAGET—(receive, allocate)
5. TYPEGET

6. ANYGET

7. COAPUT—(free)

8. ANYFREE

The memory handling rules for an any type used as an i n parameter can be
summarized as follows, based on Table 36:

1.
2.

The client calls TYPESET to set the type of the any.

The client calls ANYSET to set the value of the any and allocate memory
for it.

The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the values across the network.

The server calls COAGET, which causes the server-side COBOL runtime
to receive the any value and implicitly allocate memory for it.

The server calls TYPEGET to obtain the typecode of the any.

The server calls ANYGET to obtain the value of the any from the
operation parameter buffer.

The server calls COAPUT, which causes the server-side COBOL runtime
to implicitly free the memory allocated by the call to COAGET.

The client calls ANYFREE to free the memory allocated by the call to
ANYSET.

397

CHAPTER 9 | Memory Handling

Overview for INOUT parameters

Summary of rules for INOUT
parameters

398

Table 37 provides a detailed outline of how memory is handled for an any

type that is used as an i nout parameter.

Table 37: Memory Handling for INOUT Any Types

Client Application Server Application

1. TYPESET

2. ANYSET

3. ORBEXEC—(send)
4. COAGET—(receive, allocate)
5. TYPEGET

6. ANYGET

7. ANYFREE

8. TYPSET

9. ANYSET

10. COAPUT—(send, free)

11. (free, receive, allocate)
12. TYPEGET

13. ANYGET

14. ANYFREE

The memory handling rules for an any type used as an i nout parameter can

be summarized as follows, based on Table 37:
1. The client calls TYPESET to set the type of the any.

2. The client calls ANYSET to set the value of the any and allocate memory

for it.

3. The client calls CRBEXEC, which causes the client-side COBOL runtime

to marshal the values across the network.

4. The server calls GOAGET, which causes the server-side COBOL runtime

to receive the any value and implicitly allocate memory for it.
The server calls TYPEGET to obtain the typecode of the any.

The server calls ANYGET to obtain the value of the any from the
operation parameter buffer.

7. The server calls ANYFREE to explicitly free the memory allocated for the

original i n value via the call to COAGET in point 4.
8. The server calls TYPESET to set the type of the replacement any.

10.

11.

12.

13.

14.

Operation Parameters

The server calls ANYSET to set the value of the replacement any and

allocate memory for it.

The server calls COAPUT, which causes the server-side COBOL runtime

to marshal the replacement any value across the network and then

implicitly free the memory allocated for it via the call to ANYSET in point

9.

Control returns to the client, and the call to CRBEXEC in point 3 now

causes the client-side COBOL runtime to:

i Free the memory allocated for the original any via the call to
ANYSET in point 2.

ii. Receive the replacement any.

iii. Allocate memory for the replacement any.

Note: By having CRBEXECfree the originally allocated memory before
allocating the replacement memory means that a memory leak is
avoided.

The client calls TYPEGET to obtain the typecode of the replacement
any.

The client calls ANYGET to obtain the value of the replacement any from
the operation parameter buffer.

The client calls ANYFREE to free the memory allocated for the
replacement out string in point 11 via the call to GRBEXEC in point 3.

399

CHAPTER 9 | Memory Handling

Overview for OUT and return
parameters

Summary of rules for OUT and
return parameters

400

Table 38 provides a detailed outline of how memory is handled for an any

type that is used as an out or return parameter.

Table 38: Memory Handling for OUT and Return Any Types

Client Application Server Application

1. ORBEXEC—(send)
2. COAGET—(receive)

3. TYPESET

4, ANYSET

5. COAPUT—(send, free)
6. (receive, allocate)
7. TYPEGET

8. ANYGET

9. ANYFREE

The memory handling rules for an any type used as an out or return

parameter can be summarized as follows, based on Table 38:

1.

The client calls CRBEXEC, which causes the client-side COBOL runtime
to marshal the request across the network.

The server calls QOAGET, which causes the server-side COBOL runtime
to receive the client request.

The server calls calls TYPESET to set the type of the any.

The server calls ANYSET to set the value of the any and allocate memory
for it.

The server calls COAPUT, which causes the server-side COBOL runtime
to marshal the values across the network and implicitly free the
memory allocated to the any via the call to ANYSET.

Control returns to the client, and the call to CRBEXEC in point 1 now
causes the client-side COBOL runtime to receive the any and implicitly
allocate memory for it.

The client calls TYPEGET to obtain the typecode of the any.

The client calls ANYGET to obtain the value of the any from the
operation parameter buffer.

Operation Parameters

9. The client calls ANYFREE, which causes the client-side COBOL runtime
to free the memory allocated for the any in point 6 via the call to
CRBEXEC in point 1.

401

CHAPTER 9 | Memory Handling

User Exceptions and Memory Management

Overview Table 39 provides a detailed outline of how memory is handled for user
exceptions.

Table 39: Memory Handling for User Exceptions

Client Application Server Application

1. ORBEXEC—(send)

2. COAGET—(receive, allocate)

3. write
4. COAERR
5. (free)
6. Free
Summary of rules The memory handling rules for raised user exceptions can be summarized as

follows, based on Table 39:

1. The client calls CRBEXEC, which causes the COBOL runtime to marshal
the client request across the network.

2. The server calls QOAGET, which causes the server-side COBOL runtime
to receive the client request and allocate memory for any arguments (if
necessary).

3. The server initializes the user exception block with the information for
the exception to be raised.

4. The server calls OAERR, to raise the user exception.

5. The server-side COBOL runtime automatically frees the memory

402

allocated for the user exception in point 3.

Note: The COBOL runtime does not, however, free the argument
buffers for the user exception. To prevent a memory leak, it is up to
the server program to explicitly free active argument structures,
regardless of whether they have been allocated automatically by the
COBOL runtime or allocated manually. This should be done before
the server calls COAERR.

Operation Parameters

The client must explicitly free the exception ID in the user exception
header, by calling STRFREE. It must also free any exception data
mapping to dynamic structures (for example, if the user exception
information block contains a sequence, this can be freed by calling
SEQFREE).

403

CHAPTER 9 | Memory Handling

Memory Management Routines

Overview This section provides examples of COBOL routines for allocating and freeing
memory for various types of dynamic structures. These routines are
necessary when sending arguments across the wire or when using
user-defined IDL types as variables within COBOL.

Unbounded strings Use STRSET to allocate memory for unbounded strings, and STRFREE to
subsequently free this memory. For example:

01 MY- CCBCL- STR NG PI CTURE X(11) VALUE "Testing 123".
01 My- QOBCL- STR NG LEN Pl C 9(09) BINARY VALUE 11.
01 MY- GCRBA- STR NG PO NTER VALUE NULL.

* Alocation

CALL " STRSET" USI NG MY- CORBA- STRI NG
MY- CCBCL- STR NG LEN
MY- OCRBA- STRI NG

* Del etion

CALL " STRFREE' USI NG MY- CCRBA- STRI NG

Note: Unbounded strings are stored internally as normal C or C++
strings that are terminated by a null character. The STRx routines provide
facilities for copying these strings without the null character. The STRx
routines also provide facilities for correctly truncating and padding the
strings to and from their COBOL equivalents. It can be useful to know
exactly how big the string actually is before copying it. You can use the
STRLEN function to obtain this information.

404

Unbounded wide strings

Typecodes

Unbounded sequences

Memory Management Routines

Use WBTRSET to allocate memory for unbounded wide strings, and WSTRFRE
to subsequently free this memory. For example:

01 M- CORBA- WETRI NG PO NTER VALUE NULL.

* Al ocation

CALL "WBTRSET USI NG MY- OCRBA- WBTRI NG
MY- CCBOL- WBTR NG LEN
MY- CCRBA- WBTRI NG

* Del etion

CALL "WBTRFREE' USI NG M- OCRBA- WBTR NG

As described in the Mapping chapter, typecodes are mapped to a pointer.
They are handled in COBOL as unbounded strings and should contain a
value corresponding to one of the typecode keys generated by the Orbix E2A
IDL compiler. For example:

01 M- TYPECCDE PO NTER VALUE NULL.

* Al ocation
CALL " STRSET" USI NG Y- TYPECCDE
MY- COWPLEX- TYPE
MY- OCOMPLEX- TYPE- LENGTH
* Del etion
CALL " STRFREE' USI NG WY- TYPECCDE.

Use SEQALLCOCto initialize an unbounded sequence. This dynamically creates
a sequence information block that is used internally to record state, and
allocates the memory required for sequence elements. You can use SEQSET
and SEQGET to access the sequence elements. You can also use SEQSET to
resize the sequence if the maximum size of the sequence is not large enough
to contain another sequence element. Use SEQFREE to free memory allocated

via SEQALLCC. For example:

* Al ocation
CALL "SEQALLCC! USI NG MY- SEQUENCE- VAXI MUM
MY- USEQ TYPE
MY- USEQ TYPE- LENGTH
N SEQUENCE COF M- USEQ ARGS.
* Del etion
CALL " SEQFREE' USI NG N- SEQUENCE OF M- USEQ ARGS.

405

CHAPTER 9 | Memory Handling

The any type

406

Note: You only need to call SEQFREE on the outermost sequence, because
it automatically deletes both the sequence information block and any
associated inner dynamic structures.

Use TYPESET to initialize the any information status block and allocate
memory for it. Then use ANYSET to set the type of the any. Use ANYFREE to
free memory allocated via TYPESET. This frees the flat structure created via
TYPESET and any dynamic structures that are contained within it. For
example:

01 MY- CORBA- ANY PQA NTER VALUE NULL.
01 MY-LONG PI C 9(10) BI NARY VALLE 123.
* Al ocation
SET OCRBA- TYPE- LONG TO TRUE.
CALL "TYPESET" USI NG MY- QORBA- ANY
MY- COMPLEX- TYPE- LENGTH

CALL " ANYSET" USI NG M- CORBA- ANY
M- LONG

* Del etion
CALL " ANYFREE' USI NG MY- CCRBA- ANY.

In this chapter

CHAPTER 10

POA Policles

This chapter summarizes the POA policies that are supported
by the Orbix E2A COBOL runtime, and the argument used with
each policy.

This chapter discusses the following topics:

Overview page 408

Summary page 408

407

CHAPTER 10 | POA Policies

Overview A POA’s policies play an important role in determining how the POA
implements and manages objects and processes client requests. There is
only one POA created by the Orbix E2A COBOL runtime, and that POA uses
only the policies listed in this chapter.

See the CORBA Programmeris Guide, C++ for more details about POAs
and POA policies in general. See the Port abl eSer ver: : PQA interface in the
CORBA Programmeris Reference, C++ for more details about the POA
interface and its policies.

Note: The POA policies described in this chapter are the only POA

policies that the Orbix E2A COBOL runtime supports. Orbix E2A COBOL
programmers have no control over these POA policies. They are outlined
here simply for the purposes of illustration and the sake of completeness.

Summary Table 40 describes the policies that are supported by the Orbix E2A COBOL
runtime, and the argument used with each policy.

Table 40: POA Policies Supported by the Orbix E2A COBOL Runtime

Policy Argument Used Description

Id Assignment USER I D This policy determines whether object IDs are
generated by the POA or the application. The
USER | Dargument specifies that only the application
can assign object IDs to objects in this POA. The
application must ensure that all user-assigned IDs
are unique across all instances of the same POA.

USER | Dis usually assigned to a POA that has an
object lifespan policy of PERSI STENT (that is, it
generates object references whose validity can span
multiple instances of a POA or server process, so the
application requires explicit control over object IDs).

Id Uniqueness MULTI PLE_ | D This policy determines whether a servant can be
associated with multiple objects in this POA. The
MULTI PLE_| D specifies that any servant in the POA
can be associated with multiple object IDs.

408

Table 40: POA Policies Supported by the Orbix E2A COBOL Runtime

Policy

Argument Used

Description

Implicit Activation

NO_I MPLI A T_ACTI VATI N

This policy determines the POA’s activation policy.
The NO_| MPLI A T_ACTI VATI ON argument specifies
that the POA only supports explicit activation of
servants.

Lifespan

PERSI STENT

This policy determines whether object references
outlive the process in which they were created. The
PERSI STENT argument specifies that the IOR contains
the address of the location domain’s implementation
repository, which maps all servers and their POAs to
their current locations. Given a request for a
persistent object, the Orbix daemon uses the object’s
virtual address first, and looks up the actual location
of the server process via the implementation
repository.

Request Processing

USE_ACTI VE_CBJECT_MAP_ONLY

This policy determines how the POA finds servants to
implement requests. The

USE_ACTI VE_CBJECT_MAP_QONLY argument assumes
that all object IDs are mapped to a servant in the
active object map. The active object map maintains
an object-servant mapping until the object is
explicitly deactivated via deact i vat e_obj ect () .

This policy is typically used for a POA that processes
requests for a small number of objects. If the object
ID is not found in the active object map, an
CBJECT_NOT_EXI ST exception is raised to the client.
This policy requires that the POA has a servant
retention policy of RETAI N.

Servant Retention

RETAI N

The RETAI Nargument with this policy specifies that
the POA retains active servants in its active object
map.

409

CHAPTER 10 | POA Policies

Table 40: POA Policies Supported by the Orbix E2A COBOL Runtime

Policy

Argument Used

Description

Thread

S| NGLE_THREAD MCDEL

The SI NGLE_THREAD MDEL argument with this policy
specifies that requests for a single-threaded POA are
processed sequentially. In a multi-threaded
environment, all calls by a single-threaded POA to
implementation code (that is, servants and servant
managers) are made in a manner that is safe for
code that does not account for multi-threading.

410

In this chapter

CHAPTER 11

System Exceptions

This chapter summarizes the Orbix E2A system exceptions that
are specific to the Orbix E2A COBOL runtime.

Note: This chapter does not describe other Orbix E2A system exceptions
that are not specific to the COBOL runtime. See the CORBA Programmeris
Guide, C++ for details of these other system exceptions.

This chapter discusses the following topics:

CORBA::INITIALIZE:: exceptions page 412
CORBA::BAD_PARAM:: exceptions page 412
CORBA::INTERNAL:: exceptions page 412
CORBA::BAD_INV_ORDER:: exceptions page 413
CORBA::DATA_CONVERSION:: exceptions page 413

411

CHAPTER 11 | System Exceptions

CORBA::INITIALIZE::
exceptions

CORBA::BAD_PARAM::
exceptions

CORBA::INTERNAL::
exceptions

412

The following exception is defined within the GCRBA: : I NI Tl ALI ZE: : scope:

UNKNOM This exception is raised by any APl when the exact
problem cannot be determined.

The following exceptions

UNKNOAN_CPERATI ON

NO_CBIECT_| DENTI FI ER

| NVALI D_SERVER NAME

are defined within the GORBA: : BAD PARAM : scope:

This exception is raised by CRBEXEG, if the
operation is not valid for the interface.

This exception is raised by CBINEW if the
parameter for the object name is an invalid string.

This exception is raised if the server name that is
passed does not match the server name passed to
CRBSRVR

The following exceptions

UNEXPECTED | NVOCATI ON

UNKNOMAN_TYPECCDE

I NVALI D_STREAMABLE

are defined within the GCRBA: : | NTERNAL: : scope:

This exception is raised on the server side when a
request is being processed, if a previous request
has not completed successfully.

This exception is raised internally by the COBOL
runtime, to show that a serious error has occurred.
It normally means that there is an issue with the
typecodes in relation to either the i dI menber nameX
copybook or the application itself.

This exception is raised internally by the COBOL
runtime, to show that a serious error has occurred.
It normally means that there is an issue with the
typecodes in relation to either the i dI nenber naneX
copybook or the application itself.

CORBA::BAD_INV_ORDER::
exceptions

CORBA::DATA_CONVERSION::
exceptions

The following exceptions are defined within the CORBA: : BAD | \V_CRDER :

scope:

I NTERFACE_NOT_REQ STERED

This exception is raised if the specified
interface has not been registered via
CRBREG

| NTERFACE_ALREADY_REQ STEREDThis exception is raised by CRBREG if the

ADAPTER ALREADY | N Tl ALI ZED

STAT_ALREADY_CALLED

SERVER NAMVE_ALREADY SET

SERVER NAME_NOT_SET

NO_CURRENT_REQUEST

ARGS_NOT_READ

ARGS_ALREADY READ

TYPESET NOT_CALLED

client or server attempts to register the
same interface more than once.

This exception is raised by ORBARGS, if it is
called more than once in a client or server.

This exception is raised by ORBSTAT if it is
called more than once.

This exception is raised by CRBSRWR, if the
APl is called more than once.

This exception is raised by CBINEW COAREQ
CBJCETI D, or COARWN, if CRBSRVR is called.

This exception is raised by COAREQ if no
request is currently in progress.

This exception is raised by CoaAPUT, if the i n
or i nout parameters for the request have
not been processed.

This exception is raised by COAGET, if thein
or i nout parameters for the request have
already been processed.

This exception is raised by ANYSET or
TYPEGET, if the typecode for the any type
has not been set via a call to TYPESET.

The following exception is defined within the OORBA: : DATA OONVERSI O\ :

scope:

VALUE QUT_CF_RANGE This exception is raised by CRBEXEC, QQAGET, or
QOOAPUT, if the value is determined to be out of range
when marshalling a | ong, short, unsi gned short,
unsi gned | ong | ong | ong, or unsi gned | ong | ong

type.

413

CHAPTER 11 | System Exceptions

414

Index

A
abstract interfaces in IDL 139

ADAPTER_ALREADY_INITIALIZED exception 413

address space layout for COBOL application 47
ANYFREE function 270
ANYGET function 272
ANYSET function 274
any type
in IDL 142
mapping to COBOL 205
memory handling for 397
APIs 263
application interfaces, developing 19, 56, 89
ARGS_ALREADY_READ exception 413
ARGS_NOT_READ exception 413
array type
in IDL 151
mapping to COBOL 203
attributes
in IDL 126
mapping to COBOL 223

B
basic types
in IDL 141
mapping to COBOL 166
bitwise operators 158
boolean type, mapping to COBOL 171
built-in types in IDL 141

C
char type
in IDL 142
mapping to COBOL 177
CHECK-STATUS function 378
client output 46
clients
building 41, 82, 115
introduction to 5
running 45
writing 36, 77, 110
COAERR function 277

COAGET function 27, 65, 98, 281
COAPUT function 27, 65, 98, 286
COAREQ function 292
COARUN function 297
COBOL group data definitions 23, 60, 93
COBOL runtime 6, 48, 263
COBOL source, generating from IDL 21, 58, 91
configuration domains 9
constant definitions in IDL 155
constant expressions in IDL 158
constant fixed types in IDL 145
copybooks, generating 21, 58, 91
CORBA

introduction to 2

objects 3

D
data types, defining in IDL 154
decimal fractions 145

E
empty interfaces in IDL 128
enum type
inIDL 147
mapping to COBOL 174
ordinal values of 147
exceptions, in IDL 127
See also system exceptions, user exceptions
extended built-in types in IDL 143

F
fixed type
inIDL 144
mapping to COBOL 187
floating point type in IDL 141
forward declaration of interfaces in IDL 134

Id Assignment policy 408
identifier names, mapping to COBOL 163

415

INDEX

IDL

abstract interfaces 139
arrays 151

attributes 126

built-in types 141
constant definitions 155
constant expressions 158
defining 20, 57, 90

empty interfaces 128
enum type 147

exceptions 127

extended built-in types 143
forward declaration of interfaces 134
inheritance redefinition 133
interface inheritance 129
introduction to interfaces 3
local interfaces 135
modules and name scoping 119
multiple inheritance 130
object interface inheritance 132
operations 123

pseudo object types 153
sequence type 152

struct type 148

structure 118

union type 149

valuetypes 137
IDL-to-COBOL mapping

any type 205

array type 203

attributes 223

basic types 166

boolean type 171

char type 177

enum type 174

exception type 207

fixed type 187

identifier names 163
object type 213

octet type 179

operations 218, 224
sequence type 198

string type 181

struct type 191

typedefs 210

type names 165

union type 193

user exception type 207
wide string type 186

416

Id Uniqueness policy 408

I1OP protocol 2

Implicit Activation policy 409

inheritance redefinition in IDL 133

INTERFACE_ALREADY_REGISTERED
exception 413

interface inheritance in IDL 129

INTERFACE_NOT_REGISTERED exception 413
interfaces, developing for your application 19, 56,

89
INVALID_SERVER_NAME exception 412
INVALID_STREAMABLE exception 412

J
JCL components, checking 18, 55, 88

L
Lifespan policy 409
local interfaces in IDL 135
local object pseudo-operations 136
location domains 9
locator daemon
introduction to 10
starting 43
long double type in IDL 144
long long type in IDL 143

M
MEMALLOC function 298
MEMFREE function 300
memory handling

any type 397

object references 393

routines for 404

unbounded sequences 385

unbounded strings 389

user exceptions 402
modules and name scoping in IDL 119
MULTIPLE_ID argument 408
multiple inheritance in IDL 130

N
NO_CURRENT_REQUEST exception 413
node daemon
introduction to 10
starting 44
NO_IMPLICIT_ACTIVATION argument 409

NO_OBJECT_IDENTIFIER exception 412

@)
OBJDUP function 301
object interface inheritance in IDL 132
object references

introduction to 3

memory handling for 393
object request broker. See ORB
objects, defined in CORBA 3
object type, mapping to COBOL 213
OBJGETI deprecated function 381
OBJGETID function 303
OBJNEW function 305
OBJREL function 308
OBJRIR function 310
OBJSET deprecated function 381
OBJTOSTR function 32, 312
octet type

in IDL 142

mapping to COBOL 179
operations

in IDL 123

mapping to COBOL 218
ORB, role of 5
ORBALLOC deprecated function 381
ORBARGS function 32, 70, 102, 314
ORBEXEC function 317
ORBFREE deprecated function 381
ORBGET deprecated function 381
ORBHOST function 323
ORBINIT deprecated function 381
Orbix E2A COBOL runtime 6, 48, 263
Orbix E2A IDL compiler

configuration settings 257

introduction to 21, 58, 91

-M argument 244

-0 argument 250

-Q argument 252

running 238

-S argument 253

specifying arguments for 243

-Z argument 256
Orbix locator daemon. See locator daemon
Orbix node daemon. See node daemon
ORBPUT deprecated function 382
ORBREG function 325
ORBREGO deprecated function 382
ORBREQ deprecated function 382

ORBSRVR function 328
ORBSTAT function 329
ORBTIME function 333

P

PERSISTENT argument 409
plug-ins, introduction to 7
pseudo object types in IDL 153

R

Request Processing policy 409
RETAIN argument 409

S
SEQALLOC function 335
SEQDUP function 339
SEQFREE function 344
SEQGET function 347
SEQSET function 350
sequence type

in IDL 152

mapping to COBOL 198

See also memory handling
Servant Retention policy 409

INDEX

SERVER_NAME_ALREADY_SET exception 413

SERVER_NAME_NOT_SET exception 413
server output 46
servers

building 34, 72, 104

introduction to 5

running 45

writing implementation code for 25, 63, 96

writing mainline code for 28, 67, 100
SIMPLIDL JCL 238
SINGLE_THREAD_MODEL argument 410
SSL 7
STAT_ALREADY_CALLED exception 413
STRFREE function 355
STRGET function 357
string type

inIDL 142

mapping to COBOL 181

See also memory handling
STRLEN function 360
STRSET function 362
STRSETP function 365
STRSETSP deprecated function 382
STRTOOBJ function 367

417

INDEX

struct type

in IDL 148

mapping to COBOL 191
system exceptions 411

T
Thread policy 410

typedefs, mapping to COBOL 210
TYPEGET function 369

type names, mapping to COBOL 165
TYPESET function 371

TYPESET _NOT_CALLED exception 413

U
unbounded sequences, memory handling for 385
unbounded strings, memory handling for 389
UNEXPECTED_INVOCATION exception 412
union type

in IDL 149

mapping to COBOL 193
UNKNOWN exception 412
UNKNOWN_OPERATION exception 412
UNKNOWN_TYPECODE exception 412
USE_ACTIVE_OBJECT_MAP_ONLY argument 409
user exceptions

mapping to COBOL 207

memory handling for 402
USER_ID argument 408

Vv
valuetypes in IDL 137

W

wchar type in IDL 144

wide string type, mapping to COBOL 186
WSTRFREE function 373

WSTRGET function 186, 374

wstring type in IDL 144

WSTRLEN function 375

WSTRSET function 186, 376
WSTRSETP function 377

418

	List of Figures
	List of Tables
	Preface
	Introduction to Orbix E2A
	Why CORBA?
	CORBA Objects
	Object Request Broker

	CORBA Application Basics
	Orbix Plug-In Design
	Orbix Application Deployment
	Location Domains
	Configuration Domains

	Getting Started in Batch
	Overview and Setup Requirements
	Developing the Application Interfaces
	Defining IDL Interfaces
	Generating COBOL Source and Copybooks

	Developing the Server
	Writing the Server Implementation
	Writing the Server Mainline
	Building the Server

	Developing the Client
	Writing the Client
	Building the Client

	Running the Application
	Starting the Orbix E2A Locator Daemon
	Starting the Orbix E2A Node Daemon
	Running the Server and Client
	Application Output

	Application Address Space Layout

	Getting Started in IMS
	Overview and Setup Requirements
	Developing the Application Interfaces
	Defining IDL Interfaces
	Generating COBOL Source and Copybooks

	Developing the Server
	Writing the Server Implementation
	Writing the Server Mainline
	Building the Server
	Preparing the Server to Run in IMS

	Developing and Running the Client
	Writing the Client
	Building and Running the Client

	Getting Started in CICS
	Overview and Setup Requirements
	Developing the Application Interfaces
	Defining IDL Interfaces
	Generating COBOL Source and Copybooks

	Developing the Server
	Writing the Server Implementation
	Writing the Server Mainline
	Building the Server
	Preparing the Server to Run in CICS

	Developing and Running the Client
	Writing the Client
	Building and Running the Client

	IDL Interfaces
	IDL
	Modules and Name Scoping
	Interfaces
	Interface Contents
	Operations
	Attributes
	Exceptions
	Empty Interfaces
	Inheritance of Interfaces
	Multiple Inheritance
	Inheritance of the Object Interface
	Inheritance Redefinition
	Forward Declaration of IDL Interfaces
	Local Interfaces
	Valuetypes
	Abstract Interfaces

	IDL Data Types
	Built-in Data Types
	Extended Built-in Data Types
	Complex Data Types
	Enum Data Type
	Struct Data Type
	Union Data Type
	Arrays
	Sequence
	Pseudo Object Types

	Defining Data Types
	Constants
	Constant Expressions

	IDL-to-COBOL Mapping
	Mapping for Identifier Names
	Mapping for Type Names
	Mapping for Basic Types
	Mapping for Boolean Type
	Mapping for Enum Type
	Mapping for Char Type
	Mapping for Octet Type
	Mapping for String Types
	Mapping for Wide String Types
	Mapping for Fixed Type
	Mapping for Struct Type
	Mapping for Union Type
	Mapping for Sequence Types
	Mapping for Array Type
	Mapping for the Any Type
	Mapping for User Exception Type
	Mapping for Typedefs
	Mapping for the Object Type
	Mapping for Constant Types
	Mapping for Operations
	Mapping for Attributes
	Mapping for Operations with a Void Return Type and No Parameters
	Mapping for Inherited Interfaces
	Mapping for Multiple Interfaces

	Orbix E2A IDL Compiler
	Running the Orbix E2A IDL Compiler
	Generated COBOL Members
	Orbix E2A IDL Compiler Arguments
	Specifying the Compiler Arguments
	-M Argument
	-O Argument
	-Q Argument
	-S Argument
	-T Argument
	-Z Argument

	Configuration Member Settings
	COBOL Configuration Settings
	Adapter Mapping Member Configuration Settings

	API Reference
	API Reference Summary
	API Reference Details
	ANYFREE
	ANYGET
	ANYSET
	COAERR
	COAGET
	COAPUT
	COAREQ
	COARUN
	MEMALLOC
	MEMFREE
	OBJDUP
	OBJGETID
	OBJNEW
	OBJREL
	OBJRIR
	OBJTOSTR
	ORBARGS
	ORBEXEC
	ORBHOST
	ORBREG
	ORBSRVR
	ORBSTAT
	ORBTIME
	SEQALLOC
	SEQDUP
	SEQFREE
	SEQGET
	SEQSET
	STRFREE
	STRGET
	STRLEN
	STRSET
	STRSETP
	STRTOOBJ
	TYPEGET
	TYPESET
	WSTRFREE
	WSTRGET
	WSTRLEN
	WSTRSET
	WSTRSETP
	CHECK-STATUS

	Deprecated APIs

	Memory Handling
	Operation Parameters
	Unbounded Sequences and Memory Management
	Unbounded Strings and Memory Management
	Object References and Memory Management
	The any Type and Memory Management
	User Exceptions and Memory Management

	Memory Management Routines

	POA Policies
	System Exceptions
	Index

